Ацюковский В.А. Общая эфиродинамика. — М.:Энергоатомиздат, 2003

В начало   Другие форматы (PDF, DjVu)   <<<     Страница 81   >>>

  

81

экспериментальные результаты и объявляемых далее законами материального мира.

Однако есть основания утверждать, что перечисленные выше мнения являются, с одной стороны, крайними, с другой - явно недостаточными. В самом деле, трактовка прагматических целей науки в целом и отдельных ее направлений как первоочередных и единственных, а не конечных неминуемо приводит к тому, что собственно познание природы отодвигается на второй план или снимается совсем, в результате чего и прикладные достижения оказываются поверхностными и случайными. Как показывает опыт, наилучшие практические результаты лежат на стыке наук, казалось бы, не имеющих отношения к поставленной прикладной задаче. Это трбует дополнительных усилий, и следовательно, реальная максимальная отдача науки находится в противоречии с идеей быстрого получения прикладного результата.

Математическое количественно-функциональное описание явлений оказывается полезным, а в некоторых случаях и необходимым условием получения прикладных результатов, а также предсказания новых эффектов и явлений. Однако, учитывая бесконечное разнообразие качеств и свойств каждого материального тела, можно утверждать, что любое математическое описание есть весьма узкое и одностороннее отображение реальной действительности. При этом: 1) нет никакой гарантии в том, что математическая зависимость отражает все существенные стороны явления; 2) нет гарантии, что постановка новых экспериментов выявит какие-либо новые стороны явлений, ибо сама постановка новых экспериментов опирается на те же математические зависимости, следовательно, относится к той же узкой области явлений, из которой вытекает и сам полученный ранее «закон». Таким образом, «закон» все время подтверждается. Выйти же за рамки найденного однажды «закона» практически чрезвычайно трудно, так как в каждом эксперименте имеются погрешности, отклонения от «хорошо установленного закона» списываются на них, а качественно новые эксперименты не ставятся. Поиск новых областей оказывается случайным, а ожидаемый результат неопределенным.

Как правильно указывал Максвелл [9], математические формулы суть результат упрощения реальных явлений, а использование математических формул, не подкрепленных физическими

представлениями, приводит к тому, что «... мы совершенно теряем из виду объясняемые явления и потому не можем прийти к более широкому представлению об их внутренней связи, хотя и можем предвычислить следствия из данных законов».

82

Таким образом, ни прикладная, ни описательная стороны не могут являться главной целью естествознания.

Такой целью для естествознания вообще, и физики в частности, на всех этапах и уровнях развития должно быть вскрытие природы явлений, выяснение причин, почему эти явления именно такие, а не иные и нет ли в них каких-либо качеств, пока еще неизвестных. Но такой подход требует понимания внутреннего механизма явлений, анализа причинно-следственных отношений между материальными образованиями, участвующими в изучаемых явлениях и эффектах. Вскрытие этих связей и отношений позволяет объяснить явления, т.е. объяснить, почему это явление именно такое, а не иное. Вскрытие внутренних связей, внутренних движений материи в явлениях позволяет раскрыть сущность явлений более полно, чем при использовании только внешнего описания. При этом могут быть учтены области распространения полученных математических зависимостей и сформулированы допущенные приближения. Это дает возможность при необходимости уточнить полученные зависимости.

Высшей же целью физики как основы естествознания должны стать выявление общей для всех явлений физической основы, общего строительного материала для всех видов вещества, структурной организации материальных образований на всех уровнях иерархической организации материи и выявление общего механизма основных фундаментальных взаимодействий между ними. Но для того, чтобы это можно было сделать, необходимо сначала определить всеобщие физические инварианты, т.е. те категории, которые остаются неизменными при любых преобразованиях материальных структур и при любых процессах.

Как известно, результатом любого эксперимента являются соотношения между физическими величинами. В зависимости от того, какие из этих величин считаются постоянными, независимыми инвариантами, остальные величины, которые связаны с первыми соотношениями, полученными в эксперименте, оказываются переменными. В некоторых случаях выводы из подобных соотношений оказываются столь важными, что существенным образом влияют на развитие всего естествознания.

Так, в результате экспериментов по определению массы частицы при приближении ее скорости к скорости света получается сложная зависимость, связывающая напряженность поля конденсатора и напряженность магнитного поля, через которые пролетает частица, с ее зарядом, скоростью полета, радиусом кривизны траектории и массой [10]. Принятие в качестве инвариантов напряженностей поля и заряда