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L X I. On the Theory of  Experiments to detect Aberrations 
of the Second Degree. B y  E d w a r d  W . M o r l e y , P h.D ., 
L L .D ., Professor in Western Reserve University, and 
D a y t o n  C . M il l e r , P h .D ., Professor in Case School o f 
Applied Science, Cleveland, Ohio *.

[Plate IX.]

IN  1887 Michelson and one of the present writers made an 
experiment “On the Relative Motion of the B arth and 

the Luminiferous AEther”  + W e found that, if there were 
any effect, it was not sensibly larger than one-fortieth of the 
amount expected. To explain this result, FitzG erald and 
Lorentz suggested that the motion o£ translation of a solid 
through the aether produces a contraction in the direction of 
the drift, with extension transversely, the amount of which 
is proportional to the square of the ratio of velocities of 
translation and of light.

Such a contraction can he imagined in two ways. I t  may 
be thought to be independent of the physical properties of 
the solid and governed only by geometric conditions ; so that 
sandstone and pine, if of the same form, should be affected 
in the same ratio. On the other hand, the contraction may 
depend upon the physical properties of the solid : so that 
pine-timber would doubtless suffer a greater compression 
than sandstone. I f  the compression annul the expected 
effect in one apparatus, it  may in another apparatus give 
place to an effect other than zero, perhaps with the contrary 
sign.

W e have now completed an experiment in which two 
different pine-structures have been used, and in which the 
optical parts have been so enlarged as to produce an effect 
2-3 times as great as the apparatus of 1887. The object was 
to determine whether there is any difference between the 
behaviour of sandstone and of pine.

W hen Michelson and Morley got a null result in 1887, it 
was thought sufficient to give the theory for merely the 
maximum and the minimum expected in the four principal 
azimuths, without mention of the phenomena at intermediate 
azimuths. The theory also neglected powers higher than the 
second of the ratio of the velocities. Recently, Dr. H icks f 
has published a profound and elaborate discussion o£ the 
theory, obtained by methods which are not approximate.
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He develops expressions for angles of reflexion, for wave
length after reflexion, and for the conditions which determine 
the network of parallelograms formed by the two systems of 
wave-fronts. The diagonals of these parallelograms are 
alternately lines of maximum and minimum disturbance in 
the aether, so that they define the interference phenomena. 
These expressions are not only rigorous, but also general, 
applying to any adjustment whatever of the optical parts of 
the apparatus, and form a welcome contribution to the 
thorough understanding of the theory of the Michelson and 
Morley experiment.

In  one passage he says that a term added by him “ may 
entirely modify the nature of the changes produced as the 
direction of the drift alters ” ; and some appear to think that 
the inference from the earlier experiment is involved in 
doubt by this discussion. I t  is therefore well to examine 
again the theory.

Let D, PI. IX . fig. 1, be a plane-parallel glass plate, silvered 
so thinly that equal quantities of light are transm itted and 
reflected. S being a source of light, part of the light passes 
through D, moves on to the plane mirror I I ,  where it is 
reflected back to D ; here, part is transm itted and lost, part 
is reflected to the observer at T. The other part of the 
entering light is reflected at the first surface of D, reflected 
again by the m irror I, is in part reflected by D, and lost, in 
part transm itted through D, and proceeds towards T . I f  
distances and angles are suitable, the reunited rays between 
D and T will produce interference phenomena. I f  distances 
are equal, we may obtain interference phenomena in white 
light. In  one of the usual adjustments of distances and 
angles, parallel fringes are seen when the eye or the telescope 
is made to give distinct vision of one of the mirrors I  or I I .  
The fringes apparently coincide with these surfaces. A 
central fringe is black ; on either side are coloured fringes, 
less and less distinct till they fade away into uniform 
illumination. I f  the path of either ray is shortened, the 
fringes move rapidly to one side. I f  we engrave a scale on
I  or we can, after any alteration of one of the paths, 
restore with great accuracy and ease the former relations by 
bringing the central dark fringe to its original place on this 
scale. I f  the motion of the earth through the tether were the 
cause of this change of path, we could measure the amount 
of change by measuring the displacement.

Suppose, fig. 2, that the apparatus moves in the direction 
of the arrow through the stationary aether. W hile the ray 
of light moves from D to I  and returns to D, the mirror D
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moves to the new position D3. The angle of reflexion from 
D is no longer equal to the angle of incidence. The ray 
moving from D towards I I  finds the latter in the position 
I I 2, returns to D 2, and is reflected from D2 nearly in the 
same direction with the ray from I. In  four azimuths of 
the apparatus the coincidence is ex a c t; for all others, the 
ray I and the ray I I  are inclined at a small angle which, at 
its maximum, is numerically equal to v2/V 2, v and V being 
the velocities of the apparatus and of light. Since the 
angle S, the total aberration, cannot be observed, being 
annulled by the motion of the observing telescope at T, 
we can hope to detect merely this aberration of the second 
degree, namely, the small angle between the emergent rays
I  and II .

W ith the adjustments ju st supposed, there are four methods 
of measuring interference phenomena, which in turn  measure 
the angle sought. W e  may use a micrometer in the telescope, 
or a scale engraved on I  or 0 1 1  I I  ; we may use mechanical 
compensation to return a displaced fringe to its marked 
position, or we may use optical compensation.

In  another adjustment the fringes are made infinitely 
broad. We are then limited to the last pair of methods. 
This pair, especially the last method, is capable of very great 
precision. W hen Michelson and Morley set up the first 
apparatus in which they utilized this method, the mean error 
of a setting, in which the observer did not himself see the 
reading, was less than the two-hundredth part of a wave
length. Since the theory of the apparatus in this special 
■case is simpler, the discussion will assume this adjustment.

Accordingly, let the angles I  B D, I I  B D, fig. 3 (PI. IX .), 
be equal to each other and to 45°. Let the three planes inter
sect in a common point B. For brevity, imagine that the 
mirrors themselves are produced so as to intersect in this 
point. Assume that the system is moving through the aether 
in a direction making an angle of 67£° with the direction of 
the light entering the telescope, as indicated in fig. 2. The 
velocities of the apparatus and of light being denoted by 
v, V, assume that v/V  =  1/5.

A certain wave-front enters the apparatus, making with
II  an angle which is to be specified. If some given ray 
enters the apparatus so as to pass axially through the 
telescope, rays making an angle of 5 minutes on either 
side of it will pass through our actual apparatus. Almost 
any ray, wisely selected, may be used to determine what we 
desire to know about the whole pencil. For instance, we 
might select the ray which, after reflexion from II , shall



return to the point in  the m irror D at which it first passed 
through this semitransparent m irror ; or the ray which, after 
reflexion from I, returns to D with the same exactness. 
The simplest treatm ent is possible when we select that 
system of wave-fronts which make with the m irror I I  an

angle sin- 1  ^  cos a, where a. is the azimuth of the apparatus

measured from the position in which its motion through the 
sether is parallel to the axis of the observing telescope. The 
azimuth of the motion assumed in figs. 2 and 3 is 67° 30'.

W e will now examine the condition of the wave-fronts in 
the apparatus, fig. 3, at two specified instants, using two 
diagrams to avoid confusing the numerous lines. In  fig. 3 
are shown nine wave-fronts making the specified angle 
with I I . The wave-fronts of the transmitted fraction are 
denoted by accented letters. Seven have not yet reached 
the m irror I I  ; l>' intersects I I  in the common point B  ̂
a1 has been reflected from II , and its upper part begins to be 
reflected from D. A t the same instant are shown the wave
fronts of the other system by unaccented letters. All have 
been in part reflected from D ; c begins to be reflected from
I  ; b intersects I  in the common point ; a is quite cleared 
from the m irror I. In  fig. 4 we follow the same nine wave
fronts. Of the transmitted waves, a! has quite cleared the 
system of mirrors ; b' is ju s t clearing D ; five are but partly 
reflected from D ; h1 passes through the common point B, 
and is beginning to be reflected by D ; i' has not yet reached 
I I .  Of the other system of waves, a and b have cleared the 
system of mirrors ; five are passing through the semitrans
parent m irror I) ; h passes through the common point B, 
having ju st finished its reflexion from I  ; i is ju st beginning 
this reflexion. For all azimuths except four the general 
conditions are those of the diagram, but the amount and 
direction of the various inclinations alter with the azimuth.

The wave-front h is established in its whole length when 
it passes through the common point. The wave-front corre
sponding to it in the other system is, this instant, infinitely 
short, and a1 is the first to be established in its entirety. 
But the position of a fictitious wave of this system, h" , is 
determined by two conditions— first, that it  be parallel 
to a7, and, secondly, that it  coincide with the infinitely short 
wave-front h' at the common point B. Except a t four 
certain azimuths, these twro wave-fronts, in the same phase, 
and intersecting in a common point B, will be inclined to 
each other at a small angle. To measure or to detect this 
inclination is to measure or to detect the secondary aberration
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•which interests us. If we could measure the perpendicular 
distance between these wave-fronts at a sufficient distance 
from B, we should know the angle between them. But h" 
is only a fictitious line. W hat we cannot measure between 
h and h" we can measure between a and a', provided we can 
determine the point of' intersection between a and a', and 
provided this be found in a convenient position. W e have 
therefore to determine the point of intersection of a and a', 
knowing that of h and h".

The observing telescope is shown at T, fig. 5. Its  axis is 
parallel to B I I . We will show that the phase-difference of 
a  and a1 is constant at all point3  on any line parallel to the 
line B I I , or to the axis of the telescope.

I f  we write X, A/, not fo r  wave-lengths, but for the per
pendicular distance between consecutive wave-fronts of the 
same phase, and 8, S' for the total aberration of the wave-

A/ \fronts of the two systems, we have to show t h a t -----*r, —-----=J cos 6  cos 6
is identically zero for eight specified equidistant azimuths,

and is not greater than 0‘3 -yi for other azimuths. Each

of these quantities is determined by a complicated expression; 
and the equality specified can be most readily determined by 
trigonometric computation.

To prove the proposition, therefore, we will take that 
azimuth where, according to Dr. Hicks, the shifting of the 
intersection is a maximum, and we will assume the extreme 
case where the velocity of the apparatus is half that of light.

In  fig. 6 , the mirrors D, I, and I I  are accordingly supposed 
to move in the direction of the arrow. Let r  be the period 
of the waves of light incident on D ; according to the 
previous specification, the angle between these wave-fronts

and the plane of I I  is sin- 1  ^  cos a ; that is, they are parallel

to I I . Lay off on c d, the line of motion of a certain point 
of the mirror D, the positions of this point at the times 0, t ,  
2t, &c. Positions of D and of I  and I I  at certain times are 
also noted in the same way : all numerical subscripts denote 
times. The source moves with the apparatus, and therefore, 
with the assumed ratio of velocities, the apparent wave
length of the light incident at D is half the wave-length in 
the case of rest, and is half the distance described by a 
wave-front in the unit of time. Let the initial position be 
one in which a wave-front passes through the given point in 
the m irror and through the point 0  in the line of motion. 
4 t  the time t — T the m irror is a t 1, and the wave-front in



question cuts the line of motion in 2 , and intersects the 
m irror in e. The wave-front reflected from D at < =  0 will 
have reached the point f i ,  and the tangent e j \  establishes 
the reflected wave-front. A t the times 2 t , 3t , &c., this 
particular disturbance will be found a t / 2, / 3, / 4, &c.

W hen D is at a position 2, a new disturbance will have 
been established at g, which, at the time t — 5t, will be found 
at In the same way, h-n ir,, ks will have arranged them 
selves in the line / 5 ks A t the time f =  10 t the six wave
fronts will have been reflected from I, and will be placed 
along the line o1Q / 10. The angle / 5 O I  o is equal to the 
aberration of the wave-fronts after reflexion from D. As, at 
this azimuth, the angles of incidence and of reflexion at I  
are equal, this angle is also the aberration of the emergent 
rays.

P art of the wave-front / ,  indicated by will be trans
mitted through the m irror D. I t  will overtake the mirror
I I  a t the time t =  8t , when I I  will have position marked 
Iljj, fig. 7. Returning after reflexion, it will take the posi
tion noted for the times t =  9t , t =  10t ; and meeting the 
m irror D at t — 1 0 -| r , it will be reflected as shown t o / ' n , at 
an angle whose tangent is given by the formula below. The 
following wave-front g’ will be reflected one period later, at 
I I 9, and it is shown in several positions. The w ave-front/, 
belonging to the other system, having passed through the 
m irror, and having reached the line, Sd, at < = 1 0 t ,  is shown 
a t / n .

In  fig. 8  is shown the position of the wave-fronts below 
the m irror 1) for the time t — 15t. / 16 a n d / ' ls have moved 
along the paths indicated, while the other wave-fronts have 
moved in a corresponding manner, their position at the time 
£ =  15t being as shown in the figure. The wave-fronts of 
the unaccented system are placed on the line op ; the aber
ration of the system is equal to the angle S. The wave
fronts of the accented system are placed on the line q r ; the 
corresponding aberration is the angle S'; the line T]r,<y being 
the position of the axis of the observing telescope at the time 
t — 15t. Produce the planes of the wave-fronts, draw lines
I, I parallel to ^Tir„ the axis of the telescope, each terminated 
by the planes of consecutive wave-fronts. Their lengths 

X A/are 1= ---- „ , V = -----w . I t  is to be proved that 1 =  1'.cos b cos 6

P utting  </> for the angle of incidence and <f>’ for the angle 
of reflexion, we have for both reflexions at D, $ = 4 5 ° . F o r 
this azimuth there is no change of angles at I  and I I .  The
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angles of reflexion are given by the equation

tan -V- =  tan
2  ~  2  * V  +  » ’

where it is the velocity of the surface perpendicular to its own 
plane ; negative, if moving away from the approaching light. 
With the assumed adjustments, we therefore have ifor the 
reflexion o£ the unaccented system at D:

sin 45° +  sin S sin 45° + sin 0° 2 +  V0'5 
cos 45° +  cos S ~~ cos 45° +  cos 0° ’ 2 — \/(R>

VO'5 +  0’ 6 * n o=  — COSO =  0’b.VO-5 + 08
For the reflexion of the accented system we have :

sin 45° —sin S' sin 45° —sin 0° 2— s/^Fh 
cos 45° + cos S' ~~ cos 45° +  cos 0 ° ’ 2  +  sjiyf)

V  O7̂ -  12
cos 8 ' =

/77T , ------- 13'� � � � � � � � � �� �� �

By equation (3) o£ Dr. H icks’s* paper, putting L x for the 
perpendicular distance between wave-fronts of the light 
incident on D from the moving source,
X 4 - 0 - 5  , . , V  4 - 1  4 - 0 - 5  21 

-q = 1 -4 ; and ^  =Li 4 +  0*5 — 2 ’ Xjj 4 +  1 —4 4 +  0*5 +  2 13 
Therefore X

cos b 1 1

and X' T 21 12 . . 7 - 7

cos o 13 13 
accordingly, X' _  X — ;

cos S' ~  cos 8

Therefore, if the intersection of kn  and i'v, is on the line 
xy  parallel to <?T15, the intersection of iVs and h!v> is also on 
the same line ; that is, the phase-difference of the two sets 
of waves is constant along any line parallel to the axis of the 
observing telescope. The same thing may easily be proved 
for any one of eight equidistant points of the circumference 
commencing from the point where the motion of the apparatus 
is parallel to the axis of the telescope.

* Phil. Mag. [6] iii. p. 17 (1902).



Azimuths.
Disturbing Eff 

Dr. Hicks’s 
formula.

eots Compared. 
Kigorous 
formula.

90° ................ «s 1-2 — V3 
0-9 „
0-65 „
o-o „ 
0-0 „
0-o „
1 - 9 ,

v *o o
0-3 „ 
0-3 „
o-o „ 
0-0 „ 
00 „ 
n-n

90° + 1 1 ° ..........
90° + 22°.........
90° + 4 5 ° ..........
90° + 9 0 ° ........

-90° + 4 5 ° ..........
-9 0 ° .....................

”

The equality is exact for the central ray. For rays inclined 
as much as five minutes of arc on either side of the central
ray,

cos S' cos S = A .  v3 
------- X - <  v®'

A t azimuths other than those specified, the quantity
cos S' cos S . , , . _ v* „ , n~̂ r-,----------— is not greater than (J\j .==- tor central rays>

A  A. o V
��and not greater than 0-5 yg for extreme rays. W e may set

side by side the magnitudes of this disturbing effect for 
central rays at several azimuths according to rigorous com
putation and according to Dr. H icks’s approximate formula.

676 Profs. Morley and Miller : Experiments to

I t  will be seen that the effect detected by Dr. Hicks 
proves, by rigorous computation, to be entirely negligible 
for the central rays. Its  extreme value for marginal rays

�� ^is not greater than 0'5 y 3, which is entirely too small to

influence the observations. This result is very satisfactory. 
I t  is proved for the specified adjustment of the angles, but it 
is easy to see that the rotation of m irror I  about a perpen
dicular line in its surface, by a quantity like ten seconds of 
arc, will not change all relations of residual aberrations by 
important amounts. I t  is therefore established, at least for 
the adjustm ent specified, that the wave-fronts a and a1 of 
fig. i  intersect in the line B I I , if the wave-fronts h and h" 
do, rigorously for eight principal positions, very approxi
mately for all other positions. If, then, we can measure the 
linear distance between a and a ’ a t some convenient position 
T, we may determine the angle between the wave-fronts a 
and a’, which is the same as the angle between h and h", the



angle of aberration of the second degree, which it is the 
object to detect.

We have shown that the wave-lengths o£ the two rays, 
when resolved in the direction in which alone they are used, 
are equal. One other point as to wave-lengths must be con- 
idered. W e use wave-lengths to measure a length of less 

than 00002 mm., to determine the angle h B h". Is the 
scale of variable value ? The light from a source moving 
with the apparatus has its wave-length modified by the 
motion. Dr. Hicks gives the formula for this effect in equa
tion (4), page 17. I f  with this and the equation (2) we 
compute the wave-leugth resolved in the axis, at the azimuths 
where the effect is a maximum, and for the velocity ratio 
100, the two minima are 0'9899995 L and 0'9899505 L, 
while the two maxima are both 0'9999500 L, where L is the 
wave-length in the case of no motion. For the ratio 10,000 
these quantities differ from unity by about a hundredth part 
as much, and the inequality is negligible, even if we had to 
multiply this unit by a large number. But we have to do 
with only a fraction of the unit.

W e next inquire as to the amount and the laws of aberra
tion produced by reflexions from the mirrors of the apparatus, 
These can be developed in a series of powers of the velocity 
ratio, and of sines and cosines of the azimuth and of its 
multiples. But numerical estimates seem desirable, and the 
formulas are such that these can more easily be obtained from 
trigonometrical computation. For the actual velocity ratio 
the computation is not easy, because trigonometrical tables 
of fifteen decimal places are not available. Imagine, then, 
three different apparatus, each of the dimensions proper to 
the special value of the velocity ratio for which it is specially 
designed. One apparatus, for the ratio 10, may have the 
length B I I , fig. 3, equal to 102 L ; another, for the ratio 
100, may have the length 1002 L ; and the third, for the 
ratio 1000, may have the length 1000* L. W hat we can 
readily learn for the ratio 1 0 , with seven place logarithms, 
will apply to the ratio 1 0 0 , except for the circumstance that 
angles are not so small that sines and arcs are identical in 
value. W hat we compute for the ratio 100 with ten place 
logarithms tells us everything we desire to know for the 
ratio 1 0 0 0  and for the actual ratio.

W e have computed the aberrations of the two rays I  and
II , for certain azimuths with the velocity-ratios 10 and 1000, 
and for 18 azimuths of the apparatus with the velocity-ratio 
100. From these aberrations we subtract that part of the 
aberration which is annulled by the motion of the telescope,
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and then decompose these residual aberrations into terms 
depending on the squares and on the cubes of the ratio of 
velocities. To a thousandth part of the residual aberrations, 
their difference is represented by the equation

��  ��  ----------

S' —8 =  y j  cos +  y s (  V 0’5 sin 2a + ̂  sin 4a +  cos a).

For the velocity-ratio 10,000 the agreement would be much 
closer. F ig . 9 (PI. IX .) A shows the laws of the variation in 
the residual aberrations of the two rays I and I I ,  coming 
from the mirrors I  and I I .  The unit for A and 0  is

v'3
sin-1 ™ , and for B and D, sin-1^ -  The curves A are V2’ g V
nearly represented by (sin 2 a +  ̂  cos 2 a). Subtracting

the ordinates given by this expression from the actual ordi
nates, we get the residuals shown (after multiplication by the 
reciprocal of the velocity-ratio) at B. 0  shows the difference 
of the curves I . and I I .  of A, and thus gives directly the 
angle of divergence of the emergent wave-fronts which is 
the object of our study. D gives the difference between this

Vs
curve and the sine curve S! — 8=  ™  cos 2a. The latter curveV2

shows that the difference of the aberrations of I  and I I  is 
a t an undisturbed _ maximum at 90° and at 270°; at 0°, 
it is less than the' undisturbed maximum by the quantity
V  ̂ V̂ya cos a, or y j ; a t 180° it  is greater by the same quantity.

I t  may be thought that the adjustment of the angles 
between the m irrors which has been assumed will limit too 
narrowly the use of the apparatus. W e may simply say that 
experience with mirrors as nearly plane as those used by us 
has shown us that the method of observation supposed would 
suffice for angles of aberration at least twenty-five times that 
expected if the velocity-ratio is 1 0 ,0 0 0 .

Since the experiment gives a null result, it is not worth the 
space to prove that what is true of this adjustment is true 
with sufficient approximation for an adjustment which differs 
from the assumed adjustment only by the rotation of mirror I  
by an angle of ten seconds around a perpendicular axis passing 
through its surface. Instead, we may compare the results 
here obtained with those of I)r. Hicks.

In  the first place, he declares that the position of the 
fringes is displaced by aberration. This point is eliminated 
from our discussion by the fact that the fringes are infinitely
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wide. W e simply remark that, i£ we understand rightly his 
statement, this aberration is annulled by the motion o£ the 
telescope. Also, his discussion contains a term  expressing 
the fact, that the waves of one system gain upon those o£ the 
other while passing towards the observer. We have shown 
that, in the conditions assumed (and realized), this effect is nil 
for central rays in the eight principal azimuths, and is small 
in all others. A t its maximum, for central rays, it  is

0 ' 3 y j  . W ith  our present large apparatus, whose length is

54 X 106\ ,  the gain of one wave-front over the other in the 
whole length is much less than 1 0 _6 X.

In  the theory o£ 1887, powers o£ the velocity-ratio higher 
than the second were expressly regarded as negligible. Dr. 
Hicks virtually supplies one such term. He writes, displace

ment of fringes =  —  - ^  ----- — , where £ is thesin (B —A ) — i t 2 cos 2a
velocity-ratio, L is the length of path in the apparatus, from 
D to I, fig. 5, and B —A is the difference between the angles 
DB I  and DB II. W ithout the small term in the denom- 
nator, this gives precisely the same value as the expression in 
the paper of 1887, as a simple numerical computation shows. 
The effect of the small term is the following :—the value of

■y2the denominator is decreased or increased by at alter

nate quadrants, and the value of the fraction is therefore in
creased or decreased at alternate quadrants. But, according 
to the present solution, the expression should have a mean value 
at 90° and 270°, and have, further, a maximum at 180° and 
a minimum at 0°. At three quadrants we agree, but at the 
fourth we differ by twice the term in question. The dif
ference is easily explained and is negligible, especially in view 
of the null result of experiment.

I t  should be noted that, when there is aberration of the 
wave-front, there are four closely related magnitudes. One 
is the distance travelled by the wave-front in the period ; a 
second is the perpendicular distance between consecutive 
wave-fronts, called A in D r. Hicks’s paper ; a third is the 
distance between wave-fronts, resolved parallel to some line 
dictated by the geometric conditions of the case ; and the 
fourth is the distance between wave-fronts in the line of 
sight, which is the true wave-length. The perpendicular 
distance between wave-fronts is used rightly, as we conceive, 
in establishing the conditions o£ the network of intersecting 
wave-fronts in Dr. Hicks's admirable paper. B ut in one
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paragraph, which is entirely distinct from the rest of the 
discussion, he uses an expression which is not sufficiently 
approxim ate; e. g., if the expression be taken to mean the 
wave-length as stated above, and accordingly used to com
pute the number of waves in a given length in the line of

vision, it differs from the truth by precisely doubling 
the result found otherwise.

W e assert, then, that the theory of 1887 is correct to terms 
of the order retained, which were sufficient; that D r. H icks’s 
theory agrees with it precisely as to numerical amount and 
sign* of the effect, and that a third examination of the theory 
gives results differing from those of the two others only by 
negligible terms of the third order.

L X II. Report o f an Experiment to detect the FitzGerald- 
Lorentz Effect. B y  E d w a r d  W . M o k l e y , P h.D ., L L .D .,  
Professor in Western Reserve University, and D a y t o n  C . 
M il l k r , P h.D ., Projessor in Case School o f Applied Sciencef .
[This experiment was assisted by a grant from the, Rumford Fund of 

the American Academy of Arts and Sciences ; and a fuller account will 
appear in the Proceedings of the Academy.]

N U L L  result was obtained in 1887 J in an experiment
to detect, if possible, a difference of velocity of light in 

different directions, owing to the motion of the apparatus 
towards or away from waves of light in the stationary sether. 
FitzGerald and Lorentz then suggested that the dimensions 
of the apparatus m ight be modified by its motion through the 
jether. If  this modification depend on the resilience or 
other physical properties of the materials, it may perhaps 
be detected by experiment.

W e have constructed two apparatus with which to examine 
this question. In  the first, we replaced the sandstone used 
in 1887 by a structure of white pine. A strong cross was 
built up of planks, 14 inches wide and 2 inches thick, and 
14 feet long. One was laid east and west, then one across 
it north and south, and so on. They were slightly notched 
where they crossed. On their intersection was secured a 
cast-iron bedplate for certain optical parts of the apparatus.

* Taking into account a note in ‘Nature,’ vol. lxv. p. 343 (1902).
f  Communicated by the Authors : read at the New York Meeting of 

the National Academy of Sciences.
X  “ On the Relative Motion of the Earth and the Luminiferous AEther.” 

A. A. Michelson and E. W. Morley, Ain. Journ. Sci. vol. xxxiv. p. 333.

[Plate X.]
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