Morley E.W., Miller D.C. Report of an Experiment to Detect the FitzGerald-Lorentz Effect // Proc. Amer. Acad. Arts Sci., Vol. 41 (1905)

В начало   Другие форматы (PDF, DjVu)   <<<     Страница 323   >>>



coalesce into one. At the beginning of June the two hours are about 11 h. 20 m. a.m., mean solar time, and 9 h. 50 m. p.m. At the time of our last set of observations, July 5th to July 9th, the hours were 11 h. 40 m. a.m. and 8 h. 20 m. p.m., local mean time.

After many trials, with filar micrometer, and with scale on mirror 8, we found it advisable to accumulate a great number of observations made as rapidly as might be. What we had to do, in presence of all the local disturbances of density of the air which sometimes made observation impossible and always made it difficult, was as if we were trying to measure the solar atmospheric tide. If we could vary the period of this tide at will by controlling the revolutions of the earth, we should doubtless get a result sooner by accelerating the latter and making a great number of observations in a given time, rather than by retarding the period in order to measure with very great precision the hourly height of a barometer. We therefore proceeded as follows. One observer walked around with the moving apparatus, his eye at the telescope, while he maintained the rotation by an occasional gentle pull on a cord so fixed as not to bring any strain to bear on the cross arms of the apparatus. The room was darkened. The other observer also went around with the apparatus ; as an index showed the azimuth of the apparatus to be that indicated by one of sixteen equidistant marks, he called out the number or some other signal. The first observer replied with the reading for the given azimuth, which the second observer recorded. The next azimuth was called at the proper instant, the reading given, and so on. Half the time, perhaps, the observations were interrupted before they became numerous enough to be useful, being stopped by excessive displacement of fringes owing to temperature changes and the like. But patience is a possession without which no one is likely to begin observations of this kind. Runs of twenty and thirty turns, involving 320 or 480 readings, were uot uncommon. A run of thirty turns meant that the observer, who could sometimes make a turn of sixteen readings in sixty-five or seventy-five seconds, walked half a mile while making the severe effort involved in keeping his eye at the moving eyepiece without the least interruption for half an hour. The work is, of course, somewhat exhausting.

Observation with this apparatus could not begin till the month of August, and we had to stop without having accomplished as much as was desirable. During the busy season of the school year, observation is impossible. We had therefore expected to resume our work in June. But we then found that our pine apparatus had so much suffered from the dryness of the building that we could not maintain the adjustment of our



fringes. We could not, in the time, build another apparatus of timber which had not been dried all winter, nor was it thought well to construct another apparatus closely resembling the first. While planning a new apparatus, we made a couple of experiments to show, what was well enough known, that difference of magnetic attraction on the iron parts of our apparatus could not disturb our observations. We suspended two massive pieces of iron at the ends of one arm, so that one should be in the lines of magnetic force of the earth’s field, and the other transverse to them, these relations being reversed on reversing the position of the apparatus. But observations with this load of iron gave the same result as before. Next we placed an analytical balance on one arm, with which to weigh a bar of iron at the extremity of that arm. It was so placed that at one azimuth the bar was nearly in the lines of force, and at another was transverse to them. If there were a difference of half a milligram in twelve hundred grams, it would have been detected, but no such difference existed. We found by trial how much a weight of a hundred grams displaced our fringes, and so learned, as was known before, that the influence of the earth’s magnetism could not be a disturbing factor.

The Rumford Committee of the American Academy of Arts and Sciences having made a grant in aid of this experiment, we carried out our original plan of making a steel structure so rigid as to permit easy and satisfactory observation. In this new apparatus all the optical parts are carried by a steel frame built of plate and angle-iron, somewhat like a bridge girder. A cubical steel box, fourteen inches on each edge, constitutes the centre of the structure, which is in the form of a cross. To each of the four sides of this cube are firmly attached arms, each about six feet and a half in length. Each arm is made of steel plates, three eighths of an inch thick, eighteen inches wide at one end, and six inches wide at the other, standing on edge, and kept fourteen inches apart by suitable plates, angle-irons, and other braces ; thus are formed hollow beams of great rigidity, especially in a vertical direction. This framework is shown in Plate 1, from which it is seen that the structure is in effect two rigid beams, each fourteen feet long, crossing at right angles, and symmetrical as regards strength and rigidity.

On two ends of the cross, S and T, Figure 1, are two upright cast-iron frames, fastened by bolts, each of which carries four mirrors, marked 2, 4, 6, and 8. Against the corners of each of these frames rest four pine rods, three quarters of au inch in diameter and fourteen feet long. Each rod is supported throughout its length by a brass tube an inch in