Maxwell J.C. “Ether” // Britannica, 9 ed., vol. 8, 1878

В начало   Другие форматы (PDF, DjVu)   <<<     Страница 572   >>>

The only way of {572} accounting for the fact that the optical phenomena which would arise from these waves do not take place is to assume that the aether is incompressible. The next is that, whereas the phenomena of reflection are best explained on the hypothesis that the vibrations are perpendicular to the plane of polarization, those of double refraction require us to assume that the vibrations are in that plane. The third is that, in order to account for the fact that in a doubly refracting crystal the velocity of rays in any principal plane and polarized in that plane is the same, we must assume certain highly artificial relations among the coefficients of elasticity. The electromagnetic theory of light satisfies all these requirements by the single hypothesis[8] that the electric displacement is perpendicular to the plane of polarization. No normal displacement can exist, and in doubly refracting crystals the specific dielectric capacity for each principal axis is assumed to be equal to the square of the index of refraction of a ray perpendicular to that axis, and polarized in a plane perpendicular to that axis. Boltzmann[9] has found that these relations are approximately true in the case of crystallized sulphur, a body having three unequal axes. The specific dielectric capacity for these axes are respectively 4.773 3.970 3.811 and the squares of the indices of refraction 4.576 3.886 3.591. Physical constitution of the aether. What is the ultimate constitution of the aether? is it molecular or continuous? We know that the aether transmits transverse vibrations to very great distances without sensible loss of energy by dissipation. A molecular medium, moving under such conditions that a group of molecules once near together remain near each other during the whole motion, may be capable of transmitting vibrations without much dissipation of energy, but if the motion is such that the groups of molecules are not merely slightly altered in configuration but entirely broken up, so that their component molecules pass into new types of grouping, then in the passage from one type of grouping to another the energy of regular vibrations will be frittered away into that of the irregular agitation which we call heat. We cannot therefore suppose the constitution of the aether to be like that of a gas, in which the molecules are always in a state of irregular agitation, for in such a medium a transverse undulation is reduced to less than one fivehundredth of its amplitude in a single wave-length. If the aether is molecular, the grouping of the molecules must remain of the same type, the configuration of the groups being only slightly altered during the motion. Mr S. Tolver Preston[10] has supposed that the aether is like a gas whose molecules very rarely interfere with each other, so that their mean path is far greater than any planetary distances. He has not investigated the properties of such a medium with any degree of completeness, but it is easy to see that we might form a theory in which the molecules never interfere with each other's motion of translation, but travel in all directions with the velocity of light; and if we further suppose that vibrating bodies have the power of impressing on these molecules some vector property (such as rotation about an axis) which does not interfere with their motion of translation, and which is then carried along by the molecules, and if the alternation of the average value of this vector for all the molecules within an element of volume be the process which we call light, then the equations which express this average will be of the same form as that which expresses the displacement in the ordinary theory. It is often asserted that the mere fact that a medium is elastic or compressible is a proof that the medium is not continuous, but is composed of separate parts having void spaces between them. But there is nothing inconsistent with experience in supposing elasticity or compressibility to be properties of every portion, however small, into which the medium can be conceived to be divided, in which case the medium would be strictly continuous. A medium, however, though homogeneous and continuous as regards its density, may be rendered heterogeneous by its motion, as in Sir W. Thomson's hypothesis of vortex-molecules in a perfect liquid (see Art. Atom). The aether, if it is the medium of electromagnetic phenomena, is probably molecular, at least in this sense. Sir W. Thomson[11] has shown that the magnetic influence on light discovered by Faraday depends on the direction of motion of moving particles, and that it indicates a rotational motion in the medium when magnetized. See also Maxwell's Electricity and Magnetism, Art., 806, &c. Now, it is manifest that this rotation cannot be that of the medium as a whole about an axis, for the magnetic field may be of any breadth, and there is no evidence of any motion the velocity of which increases with the distance from a single fixed line in the field. If there is any motion of rotation, it must be a rotation of very small portions of the medium each about its own axis, so that the medium must be broken up into a number of molecular vortices. We have as yet no data from which to determine the size or the number of these molecular vortices. We know, however, that the magnetic force in the region in the neighbourhood of a magnet is maintained as long as the steel retains its magnetization, and as we have no reason to believe that a steel magnet would lose all its magnetization by the mere lapse of time, we conclude that the molecular vortices do not require a continual expenditure of work in order to maintain their motion, and that therefore this motion does not necessarily involve dissipation of energy. No theory of the constitution of the aether has yet been invented which will account for such a system of molecular vortices being maintained for an indefinite time without their energy being gradually dissipated into that irregular agitation of the medium which, in ordinary media, is called heat. Whatever difficulties we may have in forming a consistent idea of the constitution of the aether, there can be no doubt that the interplanetary and interstellar spaces are not empty, but are occupied by a material substance or body, which is certainly the largest, and probably the most uniform body of which we have any knowledge. Whether this vast homogeneous expanse of isotropic matter is fitted not only to be a medium of physical interaction between distant bodies, and to fulfil other physical functions of which, perhaps, we have as yet no conception, but also, as the authors of the Unseen Universe seem to suggest, to constitute the material organism of beings exercising functions of life and mind as high or higher than ours are at present, is a question far transcending the limits of physical speculation. [8] Over de theorie der terugkaatsing en breking van het licht, — Academisch Proefschrift door H. A. Lorentz. Arnliem, K. van der Zande, 1875. [9] “Ueber die Verschiedenheit der Dielektricitätsconstante des krystallisirten Schwefels nach verschiedenen Richtungen,” by Ludwig Boltzmann, Wiener Sitzb., 8th Oct., 1874. [10] Phil. Mag., Sept aud Nov. 1877. [11] Proceedings of the Royal Society, June, 1856.