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and a small fraction of the least volatile is present in the distillate.
That the two quantities will then differ little in weight and therefore
the deviation from the law is comparatively small, is not strange in
my opinion. -

I think to have shown in this way, that Youne’s rule is a proof
of the excellent way in which Youne’s still heads work, bat that
from a point of view of gquantitative analysis we must only take
this rule as an application of the most obvious operation, viz that of
separaling a substance in pure state from a mixture'and then weighing
it separately.

Physical Lab. of the University. Amsterdam.
Physics. — “Electromagnetic phenomena in a system moving with

any velocity smaller than that of light.”” By Prof. H. A. LorenTz.

§ 1. The problem of determining the influence exerted on electric
and optical phenomena by a translation, such as all systems have in
virtue of the Earth’s annual motion, admits of a comparatively
simple solution, so Ilong as only those terms need be taken info
account, which are proportional to the first power of the ratio

between the velocity of translation w and the velocity of light c.
2

Cases in which quantities of the second order, i.e. of the order —,
¢

may be perceptible, present more difficulties. The first example of
this kind is MichrrsoN’s well known interference-experiment, the
negative result of which has led Fitz Gerarp and myself to the
conclusion that the dimensions of solid hodies are slightly altered
by their motion throngh the aether.

Some new experiments in which a second order effect was sought
for have rccently been published. Ravimer ') and Brack?) have
examined the question whether the Earth’s motion may cause a
body to become doubly vrefracting; at first sight this might be
expecled, if the just mentioned change of dimensions is admitted.
Both physicists have however come {0 a negative result.

In the sccond place Trourox and Nosre ') have endeavoured to
detect a turning couple acting on a charged condenser, whose plates
make a certain angle with the direction of translation. The theory

) Rayieicn, Phil. Mag. (6) 4 (1902), p. 678.
%) Brace, Phil. Mag. (6) 7 (1904), p. 317.
}) Trouron and Nopee, London Roy. Soc. Trans. A 202 (1908), p. 165.
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of electrons, unless it be modified by some new hypothesis, would
undoubtedly require the existence of such a couple. In order to
see this, it will suffice to consider a condenser with aether as
dielectricum. It may be shown that in every electrostatic system,
moving with a velocity w?), there is a certain amount of “electro-
magnetic momentum”. If we represent this, in direction and magni-
tude, by a vector ®, the couple in guestion will be determined by
the vector product ?)
G.w] . . . . . . . . . ()
Now, if the axis of z is chosen perpendicular to the condenser
plates, the velocity w having any direction we like, and if U is
the energy of the condenser, calculated in the ordinary way, the
components of ® are given’) by the following formulae, which are
exact up to the first order-

. 2U . 2U .
@g '._—'_—(F lva" (b!/ :—(;T'u’,/’ @)g = 0.

Substituting these values in (1), we get for the components of
the couple, up to terms of the second order,

20 2U
Wy W, — 10, W, 0.

These expressions show that the axis of the couple lies in the
plane of the plates, perpendicular to the translation. If e is the angle
between the velocity and the normal {o the plates, the moment of the

v

U ) ) .
couple will be — w? sin 2¢; it tends to turn the condenser into such
C

a position that the plates are parallel to the Earth’s motion.

In the apparatus of Troutox and Nosrk the condenser was
fixed to the beam of a torsion-balance, sufficienily delicate to be
deflected by a couple of the above order of magnitude. No effect
could however be observed.

§ 2. The experiments of which [ have spoken are noi the only
reason for which a new examination of the problems connected
with the motion of the Earth is desirable. Poixcari*) has objected

1) A vector will be denoted by a German letter, its magnitude by the corre
sponding Lalin letter.

) See my arlicle: Weiterbildung der Maxwerrt'schen Theotie. Electronentheorie
in the Mathem. Encyclopadie V 14, § 21, a. (This aiticle will be quoted asM.E.)

8 M. L. § 56, c.

4) Powcarg, Rapports du Congrés de physique de 1900, Paris, 1, p. 22, 23, ~
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to the existing theory of electric and optical phenomena in moving
bodies that, in order to explain MichrLsSON’s negative result, the
introduction of a new hypothesis has been required, and that the
same necessity may occur each time new facts will he brought to light.
Surely, this course of inventing special hypotheses for each new expe-
rimental result is somewhat artificial. It would be more satistactory,
if it were possible to show, by means of certain fundamental assumptions,
and without neglecting terms of one order of magnitude or another,
that many electromagnetic actions are entirely independent of the
motion of the system. Some years ago, I have already sought to
frame a theory of this kind'). I belicve now to be able to treat
the subject with a better result. The only restriction as regards the
velocity will be that it be smaller than that of light.

§ 3. I shall start from the fundamental equations of the theory
of eclectrons?). Let d be the dielectric displacement in the aether,
h the magnetic force, o the volume-density of the charge of an
electron, v the velocily of a point of such a particle, and f the
clectric force, i.e. the force, rcckoned per unit charge, which is
exerted by the aether on a volume-element of an electron. Then,

it we use a fixed system of coordinates,

dvd=9 , diwh=0,"
1 .
rot )y = — (b 4 9 v),
¢
: (2)
: pot b= — — p,
» C

1
f="0+4 —[v.0]

I shall now supposc that the system as a whole moves in the
direction of 2 with a constant veloeity 0, and I shall denote bij n
any velocity a point of an clectron may have in addition to this,
so that

by == w Uy, By = Uy, 0= 0.

If the cquations (2) arc at the same time referred fo axes moving

with the system, they become

1) Lorenrz, Zillingsverslag Akad. v. Wel., 7 (1899), p, 507, Amsterdam Pioc.,
1898—99, p. 427.
SME,§2
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1 1
fo = b, + ~ w fy + — (g by — uy 0z).

§ 4. We shall further transform these formulae by a change of

variables. Putting

cﬂ

Y )

¢ —a?
and understanding by [/ another numerical quantity, to be deter-
mined further on, I take as new independent variables

d=kle , y=ly , =l . . . . . @
t'::.:-l;t—-lcl—m,. e (:))
and 1 define two new vectors » and ' by the formulae
1 , k w , k w
b’ﬂt:l_ﬁba’ by:l—z(by—':b:), b::‘lT D-_- +_c_[)'l/)"

1 , k 0 , k 0
[}.L__FI)Q.vl)I[:'Z; bn/"l‘;b: 11):"'-:72 b:‘—'c"by ,
for which, on account of (3), we may also write

by =0, , b, = kI ( ML%!);

w
o ¢
w
be =1 v, by = kL2 (by_'i:-b',), b, =k 1 (b',+:b’y)\
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As to the coefficient [, it is to be considered as a function of w,
whose value is 1 for w = 0, and which, for small values of w, differs
from umty no more than by an amount of the second order.

The variable ¢' may be called the “local time”; indeed, for £ =1,
[=1 it becomes 1dentical with what I have formerly understood by
this name.

If, finally, we put

1 !
ﬁ9=‘0 I O (7)
B u, =uly, huy =u'y, ku.=u>,. . . . (8

these latter quantities being considered as the components of a new
vector u', the equations take the following form:

ul
div' ' = (1 — f-;.) o', div' i =0,
¢
1 /o
'rot' !), = —a—' (a—t’- —I— Q’ ll'), . . . e (9)
1 ap’
t, bl —_————
[ 68" |

1 w
=0V 4. ~ (Wy bz — W b))+ 2. = (w'y d'y 4 ', d7),

B o1 Pow

fy - —k— b'y + '-k—‘ . T (ll': b’z - u’-c [)’:) - 7;—- . E; ll'.c b’:’]’ . . (10)
3 2 1 I

fo= = b, + s (w'z iy — 0y ) — T :-Z wy 'z

The meaning of the symbols div’ and rot’ in (9) is similar to that
of div and rof m (2): only, the differentations with respect to z, y, 2
are to be replaced by the corresponding ones with respect to 27, 3/, 2.

§ 5. The equations (9) lead to the conclusion that the vectors
» and §' may be represented by means of a scalar potential ¢' and
a vector potential &', These potentials sahsfy the equations ')

1 d¢'
A’y)’-—o—n-@-:—()', ¢ e e s e (11)
1 0’ 1

Aa——;;-at_"=_79u. ¢ e .« s (12)

and in terms of them d and §' are given by

) M. E., §§ 4 and 10.
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1 o' -
V= — -~ -a—\— — grad ¢ + — qmd' aay « .+ . . (18)
V=wrot'a’. . . . . e (1)
9? 0* 0?
The symbol A’ is an abbreviation for e —l—a =+ 5 and grad'e’
o' 0p' O¢'

—, =—, —, The expression
3 0y ' 07 P

denotes a vector whose components are

~

grad’ &', has a similar meaning.

In order to obtain the solution of (1) and (12) in a simple form,
we may fake &, y,2 as the coordinates of a point £ in a space
S', and ascribe to this point, for each value of #, the values of
¢\, ¢, a, belonging to the corresponding point P (v, y, 2) of the
electromagnetic system. For a definite value # of the fourth independent
variable, the potentials ¢' and o in the point [’ of the system or in
the corresponding point /' of the space ', are given by?')

o= . ...
4.71 7'

L [e'w] . .,

\1—1;; 7‘ clé . . . . . . (16)

Here dS’ is an element of the space S', )/ its distance from P’
and the brackefs serve to denote the quantity ¢’ and the vector

. \ r .
o’ v, such as they ave in the element dS’, for the value ¢’ — — of
¢

the fourth independent variable. §
Instead of (15) and (16) we may also write, taking into account

) and (7),

, (o]

¢—'4—:;r ” /lS N . . . . . (17)
cu

“’:R [“r]ds,. N ¢ £5))

the integrations now extending over the eleciromagnetic system itself.
It should be kept in mind that in these formulae »” does not denote
the distance between the element S and the point (x,y, 2) for which
the calculation is to be performed. 1f the element lies at the point
(@ ¥, 21), we must take

P =V R (@—n) + (y —1)" + —~2)
It is also to be remembered that, if we wish to determine ¢’ and

)M E, §§ 5 and 0.
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a’ for the instant, at which the local time in P is #, we must take
o and ouw’, such as they are in the element dS at the instant at

which the local time of tbat clement is ¢ — -

§ 6. It will suffice for our purpose to consider two special cases.
The first is that of an electrostatic system, i, e. a system having
no other motion but the translation with the velocity w. In this case
w =0, and therefore, by (12), &’ = 0. Also, ¢’ is independent of ¢/,
so that the equations (11), (13) and (14) reduce to

P |
a'=—0 : (19)
¥ = — grad ¢', [y = 0.

After having determined the vector d by means of these equations,
we know also the electric force acting on electrons that belong to
the system. For these the formulae (10) become, since w’' =0,

- fo=101u f—gb' Uy (20
| e= BV = oWy fo =t L (20)

The result may be put in a simple form if we compare the moving
system = with which we are concerned, to another electrostatic
system =" which remains at rest and into which = is changed, if
the dimensions parallel to the axis of x are multiplied by £/, and
the dimensions which have the direction of y or that of z, by
a deformation for which (&/,/,7) is an appropriate symbol. In this
new system, which we may suppose to be placed in the above
mentioned space S, we shall give to the deusity the value o',
determined by (7), so that the charges of corresponding elements of
volume and of corresponding electrons are the same in = and =
Then we shall obtain the forces acting on the electrons of the moving
system ¥, if we first determine the corresponding forces in =", and

next multiply "their components in the direction of the axis of & by
2

. . l
I, and their components perpendicular to that axis by T This is

conveniently expressed by the formula

2 /2

5(2):(5’,?%)3(2')' coee e e (2D)

It is further to be remarked that, after having found d’ by (19),
we can easily calculate the electromagnetic momentum in the moving
system, or rather its component in the direction of the motion.
Indeed, the formula '
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l -

1
¢

Therefore, by (6), since §' =0

w i
“ (o,,'=+b'3)ds—~i’ 0 + 2.7 dS. . (22)

shows that

&, =

§ 7. Our second special case is that of a particle having an elec-

tric moment, i. e. a small space .S, with a total charge f 0d8=0,
but with such a distribution of density, that the integrals f oxds,

f oyds, f o zd S have values differing from O.

Let X,Y,Z be the coordinates, taken relatively to a fixed point A
of the particle, which may be called its centre, and let the electric
moment be defined as a vector p whose components are

pz=|{ 0XdS, p,,:fgyd& p;_—_-f()zdS. .. (23)
Then

dpx dpl[ dpz
= u, a8, —= s d3S, = .48 . (24
7t f@ b @ T Quyd T f@u (24)

Of course, if X, y, z are treated as infinitely small, u,, u,, n- must
be so likewice. We shall neglect squares and produets of these six
quantities.

We shall now apply the equation (L7) to the determination of
the scalar potential ¢' for an exterior point P (z, ¢, 2), at finite distance
from the polarized particle, and for the instant at which the local
time of this point has some definite value #. In doing so, we shall
give the symbol [o], whih, in (17), relates to the instant at which

4

0

the local time in d Sis /—— = slightly dlffelent meaning. Distinguishing

by ', the value of 7' f01 the centre 4, we shall understand by (o]
the value of the density existing in the element d S at the point
(X, ¥, 2), at the instant ¢, at which the Jocal time of 4 is e

It may be seen from (5) that this instant precedes that for which
we have to take the numerator in (17, by
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kr o—r L0 k1 A T
+" =k 5x+_l—_¢;_(x5;+ya—§+z$)

units of time. In this last expression we may put for the differen-
tial coefficients their values at the point A4.
In (17) we have now to replace [¢] by

do k1l o' or' 0"\ [ 0o
[e] + &2 BJ+- xa+ya+‘a)hﬂ’*%’

0 . .
where [—a‘{l relates again to the time f#,. Now, the value of ¢ for

which the calculations are to be performed having been chosen, this
time £, will be a function of the coordinates 2, y, z of the exterior
point P. The value of [¢] will therefore depend on these coordinates
in such a way that

a[g] k1o Og:l, ot

e —— - —

0w I coz| ot
by which (25) becomes

(o] +L, [Bt] ( a[o] 5(_[)9] 4z a[@]

Again, if hencefm th we under stand by 7' what has above been

1
called 7', the factor 5 must be replaced by

1 xi(l) o (1) _ 81
7T Xw\7) T YR\F) TR\

so that after all, in the integral (17), the element d S is multiplied by

0, pex[%] X023yl 0zl
” 7 Lot 0 # Oy ¢ 0z 7

This is simp]er than the primitive form, because neither »’, nor
the time for which the quantities enclosed in brackets are to be

taken, depend on &, 7y, z. Using (23) and remembering that f 0dS=0,

we get

e W [0 1 (0[] 3[le 0 [p:]
¢ =k 4uo’r’[bt:| 4x |0e o +by 7 bz ” ‘

a formula in which all the enclosed quantities are to be taken for
the instant at which the local time of the centre of the particle is

!
7‘
U ——

¢
We shall conclude these calculations by introducing a new vector

', whose components are

54
Proceedings Royal Acad, Amsterdam, Vol, VI,
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Vo =klpe, Py=1Ipy, Po=1Ipz, . . . . (26)
passing at the same time to &', 2', ¢ as independent variables. The
final result is

w a[”’z]__l_ 0 [Pz]+ 0 [P'v]_l_ 0 [p ]
dawers O 4 |dd 7 3 3 7

As to the formula (18) for the vector potential, its transformation
is less complicate, because it contains the infinitely small vector v'.
Having regard to (8), (24), (26) and (5), I find

: 1 o[y
Q= —_,
dxwer OF

The field produced by the polarzed particle is now wholly deter-
mined. The formula (13) leads to

1 o [v] a[p,,] O[py], 3[»:]

¥ = d 27

T imcoer o +4 A +ay 7 +a~ r 7
and the vector ' is given by (14). We may further use the equations
(20), instead of the original formulae (10Y, if we wish to consider
the forces exerted by the polarized particle on a similar one placed
at some distance. Indeed, in the second particle, as well as in the
first, the velocities t may be held to be infinitely small.

It 15 to be remarked that the formulae for a system without
translation are implied in what precedes. For such a system the
quantities with accents become 1identical to the corresponding ones
without accents; also £=1 and /=1. The componenis of (27) are
at the same time those of the electric force which is exerted by one
polarized particle on another.

¢ =

§ 8. Thus far we have only used the fundamental equations
without any new assumptions. I shall now suppose that the electrons,
which T take to be spheves of radius R in the state of rest, have
their dimensions changed by the effect of a translation, the dimensions
in the direction of motion becoming k[ times and those in perpen-
dicular divections I times smaller.

111
In this deformation, which may be represented by (lcl Fk l)'

each element of volume is understood to preserve its charge.

Our assumption amounts to saying that in an electrostatic system
=, moving with a velocity w, all electrons are flattened ellipsoids
with their smaller axes in the direction of motion. If now, in order
to apply the theorem of § 6, we subject the sysiem to the defor-
mation (lcl, l,1), we shall have again spherical elecirons of radius £,
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Hence, if we alter the relative position of the centres of the electrons
in = by applying the deformation (£, / ), and if, in the points
thus obtained, we place the centres of electrons that remain at rest,
we shall get a system, identical to the imaginary system =, of
which we have spoken in § 6. The forces in this system and those
in = will bear to each other the relation expressed by (21).

In the second place I shall suppose that the forcas between unchar-
ged particles, as well as those between such particles and electrons, are
influenced by a translation in quite the same way as the electric forces
in an electrostatic system. In other terms, whatever be the nature of
the particles composing a ponderable body, so long as they do not
move relatively to each other, we shall have between the forces
acting in a system (=') without, and the same system (Z) with a
translation, the relation specified in (21), if, as regards the relative
position of the particles, =’ is got from = by the deformation (£/, , ),
or = from =' by the deformation (le, —1, 71)

We see by this that, as soon as the resulting force is 0 for a
particle in =", the same must be true for the corresponding particle
in X. Consequently, if, neglecting the effects of molecular motion,
we suppose each particle of a solid body to be in equilibrium under
the action of the attractions and repulsions exerted by its neighbours,
and if we rtake for granted that there is but one configuration of
equilibrium, we may draw the conclusion that the system X, if the
velocity w is imparted to it, will of dtself change into the system
=. In other terms, the translation will produce the deformation

111
U

The case of molecular motion will be considered in § 12.

It will easily be seen that the hypothesis that has formerly been
made in connexion with MrcHELSON’s experiment, is implied in what
has now been said. However, the present hypothesis is more general
because the only limitation imposed on the motion is that its velocity”
be smaller than that of light.

§ 9. We are now in a position to calculate the electromagnetic
momentum of a single electron. For simplicity’s sake I shall suppose
the charge ¢ to be uniformly distributed over the surface, so long
as the eclectron remains at vest. Then, a distribution of the same
kind will exist in the system X' with which we are concerned in
the last integral of (22). Hence
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0
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It must be observed that the product £/ is a function of w and
that, for reasons of symmetry, the vector & has the direction of the
translation. In general, representing by w the velocity of this motion,

we have the vector equation
2

e
O =—u-—Fklw. . . . . . . . (28
6mwc* R 28)
Now, every change in the motion of a system will entail a cor-
responding change in the electromagnetic momentum and will there-
fore require a certain force, which is given in direction and mag-
nitude by
d®
== ~— . . . - . 3 . » . 29
§=" (29)

Strictly speaking, the formula (28) may only be applied in the
case of a uniform rectilinear translation. On account of this circum-
stance — though (29) is always true — the theory of rapidly varying
motions of an electron becomes very complicated, the more so, because
the hypothesis of § 8 would imply that the divection and amount of
the deformation are continually changing. It is even hardly probable
that the form of the electron will be determined solely by the
velocity existing at the moment considered.

Nevertheless, provided the changes in the state of motion be suf-
ficiently slow, we shall get a satisfactory approximation by using (28)
at every instant. The application of (29) to such a quasi-stationary
translation, as it has been called by ABRaHAM'), is a very simple
matter. Let, at a certain instant, j, be the acceleration in the direction
of the path, and j, the acceleration perpendicular to it. Then the force
§ will consist of two components, having the directions of these acce-
lerations and which are given by

%1 =m, i1 and %Sn ==m, ia’

! (Y ?

w e
ml:(’)_?:;ﬁf_(d_;-)andm’:ﬁﬁékl . ... (30)

Hence, in phenomena in which there is an acceleration in the

)} Aeranay, Wied. Ann, 10 (1903), p. 103,
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direction of motion, the electron behaves as if it had a mass m,, in
those in which the acceleration is normal to the path, as if the
mass were m,. These quantities m, and m, may therefore properly
be called the “longitudinal” and “transverse” electromagnetic masses
of the electron. I shall suppose that there is no other, no “true” or

“material”’ mass.
2

Since £ and [ differ from unity by quantities of the order —, we

¥
find for very small velocities
e?
, * 7 bac'R

This is the mass with which we are concerned, if there are small
vibratory motions of the electrons in a system without translation.
If, on the contrary, motions of this kind are going on in a body
moving with the velocity w in the direction of the axis of , we
shall have to reckon with the mass m,, as given by (30), if we con-
sider the vibrations parallel to that axis, and with the mass m,, if
we treat of those that are parallel to OY or OZ, Therefore, in
short terms, referring by the index 2 to a moving system and by
=' to one that remains at rest,

ME:@%%MHm@%....@)

m1=m

§ 10. We can now proceed to examine the influence of the Earth’s
motion on optical phenomena in a system of transparent bodies. In
discussing this problem we shall fix our attention on the variable
eleciric moments in the particles or “atoms” of the system. To these
moments we may apply what has been said in § 7 For the sake
of simplicity we shall suppose that, in each particle, the charge is
concentrated in a certain number of separate electrons, and that the
“glastic” forces that act on one of these and, conjointly with the
electric forces, determine its motion, have their origin within the
bounds of the same atom.

I shall show that, if we start from any given state of motion in
a system without translation, we may deduce from it & corresponding
state that can exist in the same system after a translation has been
imparted to it, the kind of correspondence being as specified in
what follows.

a. Let A, 4, 4, etc. be the centres of the particles in
the system without translation (Z'); neglecting molecular motions
we shall take these points to remain at rest. The system of pointg
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4,, 4,, 4,, etc., formed by the centres of the particles in the moving
system 2, is obtained from {1’1, 4',, 4',, etc. by means of a deformation
(7‘:17’ —ll—, li) According to what has been said in § 8, the centres
will of themselves take these positions 4',, 4',, A';, ete. if originally,
before there was a translation, they occupied the positions 4,, 4,, 4,, ete.

We may conceive any point P’ in the space of the system =" to
be deplaced by the above deformation, so that a definite point P of
= corresponds to it. For two corresponding points P and P we shall
define corresponding instants, the one belonging to [”, the other to
P, by stating that the true time at the first instant is equal to the
local time, as determined by (5) for the point P, at the second instant.
By corresponding times for two corresponding particles we shall
understand times that may be said to correspond, if we fix our
attention on the centres A’ and A of these particles. .

b. As regards the interior state of the atoms, we shall assume that
the configuration of a particle 4 in 2 at a certain time may be

11 .
T T -l—-) from the confi-
guration of the corresponding particle in =', such as it is at the
corresponding instant. In so far as this assumption relates to the form
of the electrons themselves, it is implied in the first hypothesis of § 8.

Obviously, if we start from a state really existing in the system
=, we have now completely defined a state of the moving system =
The question remains however, whether this state will likewise be
a possible one.

In order to judge this, we may remark in the first place that
the electric moments which we have supposed io existin the moving
system and which we shall denote by p, will be certain definite
functions of the coordinates 2, y, z of the centres A of the particles,
or, as we shall say, of the coordinates of the particles themselves,
and of the time ¢. The equations which express the relations between
p on one hand and o, y, 2z, ¢ on the other, may be replaced by other
equations, containing the vectors »’ defined by (26) and the quantities
a',y’,2',t" defined by (4) and (5). Now, by the above assumptions
a and b, if in a particle 4 of the moving system, whose coordinates
are z, ¥, z, we find an electric moment  at the time ¢, or at the
local time ¢, the vector p’ given by (26) will be the moment which
exisls in the other system at the true time ¢ in a particle whose
coordinates are 2’, y’, 2’. It appears in this way that the equations
between »’, ', y’, 2/, t' are the same for both systems, the diffe-
rence Dbeing only this, that for lhe system =’ without translation

derived by means of the deformation (
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these symbols indicate the moment, the coordinates and the true time,
whereas their meaning is different for the moving system, p’, 2’,y’,2’, ¢’
being here related to the moment p, the coordinates z, y, z and the
general time ¢ in the manner expressed by (26), (4) and (5).

It bas already been stated that the equation (27) applies to both
systems. The vector b’ will therefore be the same in =’ and =,
provided we always compare corresponding places and times. How-
ever, this vector has not the same meaning in the two cases. In =’
it represents the electric force, in = it is related to this force in
the way expressed by (20). We may therefore conclude that the
electric forces acting, in = and in ', on corresponding particles at
corresponding instants, bear to each other the relation determined by
(21). In virtue of our assumption b, taken in connexion with the second
hypothesis of § 8, the same relation will exist between the ‘“elastic”
forces; consequently, the formula (21) may also be regarded as
indicating the relation between the total forces, acting on corresponding
electrons, at corresponding instants.
~ It is clear that the state we have supposed to exist in the moving
system will really be possible if, in = and X', the products of the
mass m and the acceleration of an electron are to each other in the
same relation as the forces, i.e. if

3 2

l
mj(E):(l’, - —k—)mj(E’). Y (:2)

Now, we have for tbe accelerations
AN
'(2) = (E, ]?, E) [(2 ), e e e e e (33)

as may be deduced from (4) and (5), and combining this with (32),
we find for the masses
m () = (*, K, k) m (=)

If this is compared to (31), it appears that, whatever be the value
of [, the condition is always satisfied, as regards the masses with
which we have to reckon when we consider vibrations perpen-
dicular to the translation. The only condition we have to impose on
[ is therefore

d(klw)
= ki,
But, on account of (3),
d(fw) _
dw — O °

so that we must put
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al

dw

The value of the constant must be unity, because we know already
that, for w=10,l=<1.

We are therefore led to suppose that the influence of a translation
on the dimensions (of the separate electrons and of a ponderable body
as a whole) is confined o those that have the direction of the motion,
these becoming k times smaller than they are in the state of rest. If
this hypothesis is added to those we have already made, we may be
sure that two states, the one in the moving system, the other in the
same system while at rest, corresponding as stated above, may both be
possible. Moreover, this correspondence is not limited to the electric
moments of the particles. In corresponding points that are situated
either in the aether between the particles, or in that surrounding the
ponderable- bodies, we shall find at corresponding times the same
vector b’ and, as is easily shown, the same vector h’. We maysum
up by saying : If, in the system without translation, there is a state
of motion in which, at a definite place, the components of p, ® and
h are certain functions of the time, then the same system after it
has been put in motion (and thereby deformed) can be the seat of
a state of motion in which, at the corresponding place, the com-
ponents of p’, ¥ and ) ave the same functions of the local time.

There is one point which requires further consideration. The values
of the masses m, and m, having been deduced from the theory of
quasi-stationary motion, the question arises, whether we are justified
in reckoning with them in the case of the rapid vibrations of light.
Now it is found on closer examination that the motion of an electron
may be treated as quasi-stationary 1if it changes very little during
the time a light-wave takes to travel over a distance equal to the
diameter. This condition is fulfilled in optical phenomena, becaunse
the diameter of an electron is extremely small in comparison with
the wave-length.

= 0, ! == const.

§ 11. It is easily seen thai the proposed theory can account for a
large number of facts.

Let us take in the first place the case of a system without trans-
lation, in some parts of which we have continually p =0, b =0,
H=0. Then, in the corresponding state for the moving system, we
shall have in corresponding parts (or, as we may say, in the same
parts of the deformed system) p'=0,d' = 0, |)'=0. These equations
implying » =0, d=0, b =0, as is seen by (26) and (6), it appears
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that those parts which are dark while the system is at rest, will remain
so after it has been put mm motion. It will therefore be mmpossible
to detect an influence of the Earth’s motion on any optical experi-
ment, made with a terrestrial source of light, in which the geome-
trical distribution of light and darkness is observed. Many experi-
ments on interference and diffraction belong to this class.

In the second place, if in two points of a system, rays of light
of the same state of polarization are propagated in the same direction,
the ratio between the amplitudes in these points may be shown not
to be altered by a translation. The latter remark applies to those
experiments in which the intensities in adjacent parts of the field
of view are compared.

The above conclusions confirm the results I have formerly obtained
by a similar train of reasoning, in which however the terms of the
second order were neglected. They also contain an explanation of
MicHELSON’s negative result, more general and of somewhat different
form than the one previously given, and they show why RayrLrieH
and Brace could find no signs of double refraction produced by
the motion of the Earth.

As to the experviments of Trouton and NoBLE, their negative result
becomes at once clear, if we admit the hypotheses of § 8. It may be
inferred from these and from our last assumption (§ 10) that the only
effect of the translation must have been a contraction of the whole
system of electrons and other particles constituting the charged
condenser and the beam and thread of the torsion-balance. Such a
contraction does not give rise to a sensible change of direction.

It need hardly be said that the present theory is put forward with
all due reserve. Though 1t seems to me that it can account for all
well established facts, it leads to some consequences that cannot as
yet be put to the test of experiment. One of these 15 that the result
of MicHELSON’S experiment must remain negative, if the interfering
ays of light ave made to travel through some ponderable transparent
body.

Our assumption about the contraction of the electrons cannot in
itself be pronounced to be either plausible or madmissible. What
we know about the nature of electrons is very little and the only
means of pushing our way farther will be to test such hypotheses
as 1 have here made. Of course, there will be difficultzes, e.g. as soon
as we come to consider the rotation of electrons. Perhaps we shall
have to suppose that in those phenomena in which, if there is no
translation, spherical electrons rotate about a diameter, the points of
the electrons in the moving system will describe elliptic paths,
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corresponding, in the manner specified in § 10, to the circular paths
described in the other case. -

§ 12. It remains to say some words about molecular motion. We
may conceive that bodies in which this has a sensible influence or
even predominates, undergo the same deformation as the systems of
particles of constant relative position of which alone we have spoken
till now. Indeed, in two systems of molecules =' and =, the first
without and the second with a translation, we may imagine molecular
motions corresponding to each other in such a way that, if a particle
in Z' has a certain position at a definite instant, a particle in =
occupies at the corresponding instant the corresponding position. This
being assumed, we may use the relation (33) between the accelera-
ticns in all those cases in which the velocity of molecular motion
is very small as compared to w. In these cases the molecular forces
may be taken to be determined by the relative positions, indepen-
dently of the velocities of molecular motion. If, finally, we suppose
these forces to be limited to such small distances that, for particles
acting on each other, the difference of local times may be neglected,
one of the particles, together with those which lie in its sphere of
attraction or repulsion, will form a system which undergoes the
often mentioned deformation. In virtue of the second hypothesis
of § 8 we may therefore apply to the resulting molecular force
acting on a particle, the equation (21). Consequently, the proper
relation between the forces and the accelerations will exist in the two
cases, if we suppose that the masses of all particles are influenced
by a translation to the same degree as the electromagnetie masses of
the electroms.

§ 13. The values (30) which I have found for the longitudinal and
transverse masses of an electron, expressed in terms of its velocity, are
not the same as those that have been formerly obtained by ABRAHAM,
The ground for this difference is solely to be sought in the circum-
stance that, in his theory, the electrons are treated as spheres of
invariable dimensions. Now, as regards the transverse mass, the
results of ABRAHAM have been confirmed in a most remarkable way
by KaurMANN’s measurements of the deflexion of radium-rays in
clectric and magnetic fields. Therefore, if there is not to be a most
serious objection to the theory I have now proposed, it must be
possible to show that those measurements agree with my values
nearly as well as with those of ABraHAM.

I shall begin Ly discussing two of the series of measurements
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published by Kaurmany?) in 1902. From each series he has dednced
two quantities % and §, the “reduced” electric and magnetic deflexions,

which are related as follows to the ratio 8= oﬂz

g

=k —, 4

=k vO=;% (3

Here () is such a function, that the transverse mass is given by
3

my= . WRtp(ﬁ), N (1)

whereas %, ank %, are constant in each series.

It appears from the second of the formulae (30) that my theory
leads likewise to an equation of the form (35); only ABranAM'S
tunction  (8) must be replaced by

4

4 —1,
— == (1 —=p) "
k=g (1— )

Hence, my theory requires that, if we substitute this value for
W () in (34), these equatidns shall still ‘hold. Of course, in seeking
to obtain a good agreement, we shall be justified in giving to £, and £,
other values than those of Kaurmany, and n taking for every measure-
ment a proper value of the velocity w, or of the ratio g. Writing

3
sky, Z]c’, and g' for the new values, we may put (34) in the form
§

'=sk,— . . . . . . . . . (36
8 t (36)

and
Q—pgy h="_ .. ... @

L’ &

KaurMaNN has tested his equations by choosing for £, such a value
that, calculating @ and £, by means of (34), he got values for this
latter number that remained constant in each series as well as might
be. This constancy was the proof of a sufficient agreement.

I have followed a similar method, using however some of the
numbers calculated Ly Katvrmany. I have computed for each measure-
ment the value of the expression

K,=0—8 @k, . . . . . . (39)
that may be got from (37) combined with the second of the equations
(34). The values of ¥ (B) and &, have been taken from KAUFMANN'S
tables and for §' I have substituted the value he has found for g,
multiplied by s, the latter coefficient being chosen with u view to

1) Kaurnany, Physik. Zeitschr. 4 (1902), p. b5.
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obtaining a good constancy of (38). The results are contained in the
following tables, corresponding to the tables III and IV in KAUFMANN’S
paper. >

I s=0933.

B (B L) g ky!

0.851 2.147 1.721 0.794 2.246

0.766 1.86 1.736 0.715 2,958
0.727 1.78 1.725 0.078 2.256
0.6615 1.66 1.727 0.617 2.256

0.6075 1.59 1.655 0.567 2.175

IV. &= 0,95 ‘

B ¢(8) ks B ky!
0.963 3.23 8 12 0.919 10.36
0.949 9.86 7.99 0.905 9.70
0.933 2.73 7.46 0.800 9.28
0.883 2.31 8.92 0.842 10.36
0.800 2.193 8.09 0.820 10.15
0.830 2.06 8.43 0.792 10.23
0.801 1.96 8.13 0.764 10.98
0.777 1.89 8.04 0.741 10.20
0.752 183 8.02 0.717 10.92
0,732 1.785 7.97 0.698 10.18

The constancy of £, is seen to come out no less satisfactory than
that of %,, the more so as in each case the value of s has been
determined by means of only two measurements. The coefficient has
been so chosen that for these two observations, which were in Table
III the first and the last but one, and in Table IV the first and the
last, the values of X', should be proportional to those of Z,.

I shall next consider two series from a later publication by KAuFMANN?),
which have been calcalated by Ruxee®) by means of the method of

1) Kavrmany, Gotl, Nachr, Math. phys. KL, 1903, p. 90.
% Rusag, ibidem, p. 326,
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least squares, the coefficients %, and %, having been determined in
such a way, that the values of 7, calculated, for each observed &,
from KAUuFPMANN'S equations (34), agree as closely as may be with
the observed values of .

I have determined by the same condition, likewise using the method
of least squares, the constants ¢ and & in the formula

% = a§? + b%*, ,
which may be deduced from my equations (36) and (37). Knowing
a and b, 1 find B for each measurement by means of the relation

= l/a,E
M

For two plates on which KauryMany had measured the electric and
magnetic deflexions, the results arve as follows, the deflexions being
given in centimeters.

I have not found time for calculating the other tables in KaurmanN’s
paper. As they begin, like the table for Plate 15, with a rather
large negative difference between the values of n which have been
deduced from the observations and calculated by Runee, we may
expect a satisfactory agreement with my formulae.

§ 14. I take this opportunity for mentioning an experiment that

Plate N°. 15. a =0,06489, & —=10,3039.

—
] 8

g
Calculated b
Observed, |C2lovlated | pyy | Caloulated | - pyy y
, y R y R. L.
0.1495 | 0.0388 | 00404 | — 16| 0.0400 | — 12| 0.987 | 0.951

0.192 0.0548 0 0550 — 2| 0.0552 — 4 0.964 0.918
0.2475 0 0716 0.0710 4+ 6| 0.0715 + | 0.930 0.881
0.296 0 0896 0.0887 + 9 0.0895 + 1 0.889 0.842
0.3435 0.1080 0.1081 — 1] 0.1090 — 10 0 847 0.803
0.391 0.1290 0.1297 — 71 0.1305 — 15 0.804 0.763
0.437 0.1524% 0.1527 — 3| 0.1532 — 8 0.763 0.727
0.4825 0.1788 0.1777 + 11| 0.1777 + 11 0.724 | 0.692
0.5265 0.2033 0.2039 — 6] 0.2033 0 0.688 0.660
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' Plate N°. 19.  q=0,05867, b= 10,2591,

! B
Calculated by
R. L.

A

Observed. Callf;l?ged Difr. Calg;lited Difr.

0.1495 0.040% 0 0388 4+ 16 | 0.0379 425 0.990 0.954
0.199 0.0529 0 0527 4 2| 00322 + 7 0.969 0.923
0.247 0 0678 0 0675 + 3 0.0674 + 4 0.939 0.888

0.296 0.083% 0 0842 — 8| 0.0844 —10 0 902 0.849
0.3435 0.1019 0.1022 — 3] 0.102 -1 0 862 0.811
0.391 0.1219 0.1222 — 3| 0122 -7 0 §22 0.773
0.437 0.1429 0.1434 — 5| 01437 — 8 0.782 0.736

0.4825 0 1660 0.1665 — 5| 0.1664 — 4 0.744 0.702
0.5265 0 1916 0.1906 410 | 0.1902 414 0.709 0.671

has been made by Trouron?) at the suggestion of Firz Gurarb, and
in which it was tried to observe the existence of a sudden impulse
acting on a condenser at the moment of charging or discharging;
for this purpose the condenser was suspended by a torsion-balance,
with its plates parallel to the Earth’s motion. For forming an
estimate of the effect that may be expected, it will suffice to consider
a condenser with aether as dielectricam. Now, if the apparatus is
charged, there will be (§ 1) an electromagnetic momentum

l ® = -—:;—- . !
(Terms of the third and higher orders are here neglected). This
momentum being produced at the moment of charging, and dis-
appearing at that of discharging, the condenser must experience in
the first case an impulse — & and in the second an impulse 4 &.

However TrouroN has not been able to observe these jerks.

I believe it may be shown (though his calculations have led him
to a different conclusion) that the sensibility of the apparatus was
far from sufficient for the object Trouron had in view.

Representing, as before, by U the energy of the charged condenser

1) Trouron, Dublin Roy. Soc. Trans. (2) 7 (1902), p. 379 (This paper may also
be found in The scientific writings of Firz Gerawp, edited by Larmor, Dublin and

London 1902, p. 557).
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in the state of rest, and by U - U’ the energy in the stale of motion,
we have by the formulae of this paper, up to the terms of the

second order,
2v?
U = - U,
c
an expression, agreeing in order of magnitude with the value used
by Trouron for estimating the effect.

!

The intensity of the sudden jerk or impulse will therefore be—;.

Now, supposing the apparatus to be initially at rest, we may
compare the deflexion @, produced by this impulse, to the deflexion
o' which may be given to the torsion-balance by means of a constant
couple K, acting during half the vibration time. We may also
consider the case in which a swinging motion has already been set
up; then the impulse, applied at the moment in which the apparatus
passes through the position of equilibrium, will alter the amplitude
by a certain amount § and a similar effect ' may be caused by
letting the couple K act during the swing from one extreme position
to the other. Let 7 be the period of swinging and [ the distance
from the condenser to the thread of the torsion-balance. Then it is
easily found that

@« B alUl
@ B KTw'

According to Trouron's statements U' amounted to one or two
ergs, and the smallest couple by which a sensible deflexion could be
produced was estimated at 7,5 C.G. S.-units. If we substitute this
value for K and lake into account that the velocity of the Earth’s
motion is 3 X 10° c.M. per sec., we immediately see that (39) must
have been a very small fraction.

(39)

Al

Mathematics., — “Observation on the paper communicated on
Febr. 27 1904 by Mr. Brouwer: ”On a decomposition of the
continuous motion about a point O of S, wmio two continuous
motions about 0 of S,'s.”” By Dr. E. Jannke. (Communicated

by Prof. D. J. KORTEWEG.)

The above mentioned paper is connected with investigations of
Ferp. Caspary and with works published by me in the years
1896—190L. Mr. Brouwrr not referring to these, I take the liberty
to remark the following: Problems of the theory of the thetafunc-
tions on one hand and of mechanics on the other hand have led



