
Physics. — “Electromagnetic phenomena in a system moving with 
any velocity smaller than that o f light” By Prof. H. A. L orentz.

§ 1. The problem of determining the influence exerted on electric 
and optical phenomena by a translation, such as all systems have in 
virtue of the Earth’s annual motion, admits of a comparatively 
simple solution, so long as only those terms need be taken into 
account, which are proportional to the first power of the ratio 
between the velocity of translation to and the velocity of light c.

Cases in which quantities of the second order, i.e. of the order

may be perceptible, present more difficulties. The first example of 
this kind is M ichelson’s well known interference-experiment, the 
negative result of which has led F itz G erald and myself to the 
conclusion tliat the dimensions of solid bodies are slightly altered 
by their motion through the aether.

Some new experiments in which a second order effect was sought 
for have recently been published. R ayleigh ') and B race a) have 
examined the question whether the Earth’s motion may cause a 
body to become doubly refracting; at first sight this might be 
expected, if the just mentioned change of dimensions is admitted. 
Both physicists have however come to a negative result.

In the second place T routon and N oble ’ ) have endeavoured to 
detect a turning couple acting on a charged condenser, whose plates 
make a certain angle with the direction of translation. The theory

5) R ayleigh , Phil. Mag. (6) 4 (1902), p. 678.
2) B race , P h il. Mag. (6) 7 (1904), p. 3 17 .
!) T rodton  and N oble, London Roy. Soc. Trans. A  205 (1903), p . 165.



of electrons, unless it be modified by some new hypothesis, would 
undoubtedly require the existence of such a couple. In order to 
see this, it will suffice to consider a condenser with aether as 
dielectricum. It may be shown that in every electrostatic system, 
moving with a velocity w x), there is a certain amount of “ electro
magnetic momentum” . If we represent this, in direction and magni
tude, by a vector ©, the couple in question will be determined by 
the vector product3)

..................................... (1)

Now, if the axis of z is chosen perpendicular to the condenser 
plates, the velocity u> having any direction we like, and if U is 
the energy of the condenser, calculated in the ordinary way, the 
components of © are given') by the following formulae, which are 
exact up to the first order-

Substituting these values in (1), we get for the components of 
the couple, up to terms of the second order,

These expressions show that the axis of the couple lies in the 
plane of the plates, perpendicular to the translation. If a is the angle 
between the velocity and the normal to the plates, the moment of the

couplc will be ; it tends to turn the condenser into such

a position that the plates are parallel to (he Earth’s motion.
In the apparatus of Trouton and Noble the condenser was 

fixed to the beam of a torsion-balance, sufficiently delicate to be 
deflected by a couple of the above order of magnitude. No effect 
could however be observed.

§ 2. The experiments of which I have spoken are not the only 
reason for which a new examination of the problems connected 
with the motion of the Earlli is desirable. Poincare 4) has objected

]) A  vector w ill be denoted by a German letter, its hiagnitudp by the corre 
spo'nding Latin  letter.

2) See my article: W eiterbildung der M ax w e l l ’sch en  Theor ie. Electronentlieorie 
in the Mathem. Encyclopadie V 14, § 2 1 ,  a. (This ai ticle w ill bp quoted a s M .E .)

s) M. E . §  56, c. ’
4) P oincar£, Rapports du Congres de physique de 1900, P a ris , 1 ,  p. 22, 23.
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to the existing theory of electric and optical phenomena in moving 
bodies that, in order to explain Michelson’s negative result, the 
introduction of a new hypothesis has been required, and that the 
same necessity may occur each time new facts will be brought to light. 
Surely, this course of inventing special hypotheses for each new expe
rimental result is somewhat artificial. It would be more satisfactory, 
if if were possible to show, by means of certain fundamental assumptions, 
and without neglecting terms of one order of magnitude or another, 
that many electromagnetic actions are entirely independent of the 
motion of the system. Some years ago, I have already sought to 
frame a theory of this kind1). I believe now to be able to treat 
the subject with a better result. The only restriction as regards the 
velocity will be that it be smaller than that of light.

$ 3 . I shall start from the fundamental equations of the theory 
of electrons3). Let & be the dielectric displacement in the aether, 
f) the magnetic force, q the volume-density of the charge of an 
electron, » the velocity of a point of such a particle, and f the 
electric force, i. e. the force, reckoned per unit charge, which is 
exerted bv the aether on a volume-element of an electron. Then, 
if we use a fixed system of coordinates,

I shall now suppose I hat the system as a whole moves in the 
direction of x with a constant velocity to, and I shall denote bij h 
any velocity a point of an electron may have in addition to this, 
so that

If the equations (2) arc at the same time referred to axes moving 
with the system, they become

», =  «> +  u* i>y =  %, .

]) Lorentz, Zil lings vet slag Akad. v. Wet., 7 (1899), p. 507, Amsterdam Proc., 
1898-09, p. 427.

2) M. E., § 2.



$ 4. We shall further transform these formulae by a change of 
variables. Putting

..................................(3)

and understanding by I another numerical quantity, to be deter
mined further on, I take as new independent variables

............................ (4)

................... (5)

and I define two new vectors b' and I)' by the formulae

tor which, on account of (3), we may also write



As to the coefficient I, it is to be considered as a function of w, 
whose value is 1 for 10 =  0, and which, for small values of to, differs 
from unity no more than by an amount of the second order.

The variable t‘ may be called the “ local time5’ ; indeed, for h =  1, 
Z =  1 it becomes identical with what I have formerly understood by 
this name.

If, finally, we put

. . .  (7)

. . .  (8)
these latter quantities being considered as the components of a new 
vector «', the equations take the following form :

. . (9) 

. (10)

The meaning of the symbols div' and rot' in (9) ivS similar to that 
of div and rot in (2); only, the differentations with respect to x, y, z 
are to be replaced by the corresponding ones with respect to y ', z'.

§ 5. The equations (9) lead to the conclusion that the vectors 
b' and I)1 may be represented by means of a scalar potential <p' and 
a vector potential These potentials satisfy the equationsa)

.......................... (1 1 )

and in terms of them i>' and &' are given by

1) M. E., §§ 4 and 10.



• • • (14)

The symbol A' is an abbreviation for , and gmdUp

denotes a vector whose components are The expression

grail' has a similar meaning;.
In order to obtain the solution of (11) and (12) in a simple form, 

we may take &, y‘, z' as the coordinates of a point P 1 in a space 
S', and ascribe to this point, for each value of ?, the values of 
q', u', <p', belonging to the corresponding point P  (.v, ;/, s) of the 
electromagnetic system. For a definite value f  of the fourth independent 
variable, the potentials <p' and a' in the point P of the system or in 
the corresponding point P' of the space >$', are given by ')

............................ (15) 

............................ (16)

Here clS' is an element of the space S', r' its distance from P' 
and the brackets serve to denote the quantity </ and thevector

q' u', such as they are in the element dS', for the value of

the fourth independent variable.
Instead of (J5) and (16) we may also write, taking into account 

(4) and (7),

.......................(17)

. . . . . . . . . . . . . . . . . . . . . . . . (IS)

the integrations now extending over the electromagnetic system itself. 
It should be kept in mind that in these formulae /•' does not denote 
the distance between the element dS and the point (ji, y, z) for which 
the calculation is to be performed. If the element lies at the point 
(*i> ;'A> 2i)i we must take

It is also lo be remembered that, if we wish to determine <p' and

i) M. E., §§ 5 and 10.



a' for the instant, at which the local time in P is t', we must take 
q and q u', such as they are in the element clS at the instant at

which the local time of that clement is

§ 6. It will suffice fot‘ our purpose to consider two special cases. 
The first is that of an electrostatic system, i, e. a system having 
no other motion but the translation with the velocity w. In this case 
ti/ =  0, and therefore, by (12), a' = 0 .  Also, rp' is independent of t', 
so that the equations (11), (13) and (14) reduce to

. . (19 )

After having determined the vector i>' by means of these equations, 
we know also the electric force acting on electrons that belong to 
the system. For these the formulae (10) become, since u' =  0,

.....................(20)
i

The result may be put in a simple form if we compare the moving 
system 2  with which we are concerned, to another electrostatic 
system 2 '  which remains at rest and into which 2  is changed, if 
the dimensions parallel to the axis of x are multiplied by hi, and 
the dimensions which have the direction of y or that of z, by I, 
a deformation for which (kl, I, I) is an appropriate symbol. In this 
new system, which we may suppose to be placed in the above 
mentioned space S', we shall give to the density the v a lu e  q’, 
determined by (7), so that the charges of corresponding elements of 
volume and of corresponding electrons are the same in 2  and 2 ’. 
Then we shall obtain the forces acting on the electrons of the moving 
system 2 ,  if we first determine the corresponding forces in 2 ', and 
next multiply their components in the direction of the axis of <b by

I1, and their components perpendicular to that axis by This is

conveniently expressed by the formula

It is further to be remarked that, after having found i>' by (19), 
we can easily calculate the electromagnetic momentum in the moving 
system, or rather its component in the direction of the motion. 
Indeed, the formula

(21)



( 816 )

shows that

Therefore, by (6), since 1/ =  0

• (22)

$ 7. Our second special case is that of a particle having an elec

tric moment, i. e. a small space S, with a total charge ,

but with such a distribution of density, that the integrals

have values differing from 0.

Let x ,y , z be the coordinates, taken relatively to a fixed point 
of the particle, which may be called its centre, and lei the electric 
moment be defined as a vector p whose components are

. . (23)

Then

• (24)

Of course, if x, y, z are treated as infinitely small, ua, u,h «- must 
be so likewise. We shall neglect squares and products of thebe six 
quantities.

We shall now apply the equation (17) to the determination of 
the scalar potential V  for an exterior point P(x, y, z), at finite distance 
from the polarized particle, and for the instant at which the Jocal 
time of this point has some definite value $. In doing so, we shall 
give the symbol [9], which, in (17), relates to the instant at which

I

the local time in d S is a slightly different meaning. Distinguishing

by r\ the value of r' for the centre A, we shall understand by 
the value of the density existing in the element dS  at the point

(X, y, z), at the instant tt at which the local time of A  is

It may be seen from (5) that this instant precedes that tor which 
we have to take the numerator in (17; by



( 817)

units of time. In this last expression we may put for the differen
tial coefficients their values at the point A.

In (17) we have now to replace [j>] by

. • (25)
where relates again to the time t0. Now, the value of t' for

which the calculations are to be performed having been chosen, this 
time t0 will be a function of the coordinates x, y, z of the exterior 
point P. The value of [9] will therefore depend on these coordinates 
in such a way that

etc.,

by which (25) becomes

Again, if henceforth we understand by r‘ what has above been 

called r\, the factoi must be replaced by

so that after all, in the integral (17), the element cl S is multiplied by

This is simpler than the primitive form, because neither r', nor 
the time for which the quantities enclosed in brackets are to be

taken, depend on x, y, z. Using (23) and remembering thai

we get

a formula in which all the enclosed quantities are to be taken for 
the instant at which the local time of the centre of the particle is

We shall conclude these calculations by introducing a new vector 
V', whose components are

Proceedings R oyal Acad, Amsterdam. Vol. V I.



passing at the same time to x', y\ z', t  as independent variables. The 
final result is

As to the formula (18) for the vector potential, its transformation 
is less complicate, because it contains the infinitely small vector 
Having regard to (8), (24), (26) and (5), I find

«  i

The field produced by the polarized particle is now wholly deter
mined. The formula (13) leads to

(27)

and the vector f)' is given by (14). We may further use the equations 
(20), instead of the original formulae (10\ if we wish to consider 
the forces exerted by the polarized particle on a similar one placed 
at some distance. Indeed, in the second particle, as well as in the 
first, the velocities » may be held to be infinitely small.

It is to be remarked that the formulae for a system without 
translation are implied in what precedes. For such a system the 
quantities with accents become identical to the corresponding ones 
without accents; also k — 1 and I— 1. The components of (27) are 
at the same time those of the electric force which is exerted by one 
polarized particle on another.

§ 8. Thus far we have only used the fundamental equations 
without any new assumptions. I shall now suppose that the electrons, 
which I  take to be spheres o f radius R in the state o f rest, have 
their dimensions changed by the effect o f  a translation, the dimensions 
in the direction o f motion becoming k I times and those in perpen
dicular direction•> I times smaller.

In this deformation, which may be represented by

each element of volume is understood to preserve its charge.
Our assumption amounts to saying that in an electrostatic system 

2 , moving with a velocity to, all electrons are flattened ellipsoids 
with their smaller axes in the direction of motion. If now, in order 
(o apply the theorem of § 6, we subject the system to the defor
mation (Jcl, I, I), we sliaU have again spherical electrons of radius B,



Hence, if we alter the relative position of the centres of the electrons 
in 2  by applying the deformation (kl, I, I), and if, in the points 
thus obtained, we place the centres of electrons that remain at rest, 
we shall get a system, identical to the imaginary system 2 ', of 
which we have spoken in § 6. The forces in this system and those 
in 2  will bear to each other the relation expressed by (21).

In the second place I shall suppose that the forces between unchar
ged particles, as well as those between such particles and electrons, are 
influenced by a translation in quite the same ivay as the electric forces 
in an electrostatic system. In other terms, whatever be the nature of 
the particles composing a ponderable body, so long as they do not 
move relatively to each other, we shall have between the forces 
acting in a system (2 ") without, and the same system (2 ) with a 
translation, the relation specified in (21), if, as regards the relative 
position of the particles, 2 '  is got from 2  by the deformation (kl, I, I),

We see by this that, as soon as the resulting force is 0 for a 
particle in 2', the same must be true for the corresponding particle 
in 2 ,  Consequently, if, neglecting the effects of molecular motion, 
we suppose each particle of a solid body to be in equilibrium under 
the action of the attractions and repulsions exerted by its neighbours, 
and if we take for granted that there is but one configuration of 
equilibrium, we may draw the conclusion that the system 2 ', if the 
velocity to is imparted to it, will o f itself change into the system 
2 .  In other terms, the translation will produce the deformation

The case of molecular motion will be considered in § 12.
It will easily be seen that the hypothesis that has formerly been 

made in connexion with Michelson's experiment, is implied in what 
has now been said. However, the present hypothesis is more general 
because the only limitation imposed on the motion is that its velocity* 
be smaller than that of light.

$ 9. We are now in a position to calculate the electromagnetic 
momentum of a single electron. For simplicity’s sake I shall suppose 
the charge e to be uniformly distributed over the surface, so long 
as the electron remains at rest. Then, a distribution of the same 
kind will exist in the system 2 '  with which we are concerned in 
the last integral of (22). Hence

or 2  from 2 '  by the deformation



and

It must be observed that the product hi is a function of w and 
that, for reasons of symmetry, the vector <3 has the direction of the 
translation. In general, representing by ti' the velocity of this motion, 
we have the vector equation

.............................(28)

Now, every change in the motion of a system will entail a cor
responding change in the electromagnetic momentum and will there- 
foi’e require a certain force, which is given in direction and mag
nitude by

................................. (29)

Strictly speaking, the formula (28) may only be applied in the 
case of a uniform rectilinear translation. On account of this circum
stance — though (29) is always true —  the theory of rapidly varying 
motions of an electron becomes very complicated, the more so, because 
the hypothesis of § 8 would imply that the direction and amount of 
the deformation are continually changing. It is even hardly probable 
that the form of the electron will be determined solely by the 
velocity existing at the moment considered.

Nevertheless, provided the changes in the state of motion be suf
ficiently slow, we shall get a satisfactory approximation by using (28) 
at every instant. The application of (29) to such a quasi-stationary 
translation, as it has been called by Abraham *), is a very simple 
matter. Let, at a certain instant, |\ be the acceleration in the direction 
of the path, and j„ the acceleration perpendicular to it. Then the force 
% will consist of two components, having the directions of these acce
lerations and which are given by

if
. . . .  (30)

Hence, in phenomena in which there is an acceleration in the

J) Asraham, Wied. Ann, 10 (1903), p. 105,



direction of motion, the electron behaves as if it had a mass ???,, in 
those in which the acceleration is normal to the path, as if the 
mass were mf. These quantities ml and m% may therefore properly 
be called the “ longitudinal” and “ transverse” electromagnetic masses 
of the electron. I shall suppose that there is no other, no “ true” or 
“material” mass.

Since k and I differ from unity by quantities of theordei we 

find for very small velocities

(

This is the mass with which we are concerned, if there are small 
vibratory motions of the electrons in a system without translation. 
If, On the contrary, motions of this kind are going on in a body 
moving with the velocity w in the direction of the axis of x, we 
shall have to reckon with the mass as given by (30), if we con
sider the vibrations parallel to that axis, and with the mass mt, if 
we treat of those that are parallel to O Y  or OZ, Therefore, in 
short terms, referring by the index 2  to a moving system and by 
S ' to one that remains at rest,

. . . .  (31)

§ 10. We can now proceed to examine the influence of the Earth’s 
motion on optical phenomena in a system of transparent bodies. In 
discussing this problem we shall fix our attention on the variable 
electric moments in the particles or “atoms” of the system. To these 
moments we may apply what has been said in $ 7 For the sake 
of simplicity we shall suppose that, in each particle, the charge is 
concentrated in a certain number of separate electrons, and that the 
“elastic”  forces that act on one of these and, conjointly with the 
electlic forces, determine its motion, have their origin within the 
bounds of the same atom.

I shall show that, if we start from any given state of motion in 
a system without translation, we may deduce from it a corresponding 
state that can exist in the same system after a translation has been 
imparted to it, the kind of correspondence being as specified in 
what follows.

a. Let A i, A'„ A\, etc. be the centres of the particles in 
the system without translation (2 ') ;  neglecting molecular motions 
we shall take these points to remain at rest. The system of points



A %, A.}, Az, etc., formed by the centres of the particles in the moving 
system 2 ,  is obtained from A'1} A\, A'3, etc. by means of a deformation

According to what has been said in § 8, the centres

will of themselves take these positions A\t A's, A'3> etc. if originally, 
before there was a translation, they occupied the positions Av A,, At> etc.

We may conceive any point P' in the space of the system 2 '  to 
be deplaced by the above deformation, so that a definite point P o f 
2  corresponds to it. For two corresponding points P  and P  we shall 
define corresponding instants, the one belonging to P ,  the other to 
P, by stating that the true time at the first instant is equal to the 
local time, as determined by (5) for the point P, at the second instant. 
By corresponding times for two corresponding 'particles we shall 
understand times that may be said to correspond, if we fix our 
attention on the. centres A ' and A of these particles.

b. As regards the interior state of the atoms, we shall assume that 
the configuration of a particle A in 2  at a certain time may be

derived by means of the deformation from the confi
guration of the corresponding particle in 2', such as it is at tlio 
corresponding instant. In so far as this assumption relates to the form 
of the electrons themselves, it is implied in the first hypothesis of $8.

Obviously, if we start from a state really existing in the system 
2 ',  we have now completely defined a state of the moving system 2 .  
The question remains however, whether this state will likewise be 
s i  possible one.

In order to judge this, we may remark in the first place that 
the electric moments which we have supposed to exist in the moving 
system and which we shall denote by p, will be certain definite 
Functions of the coordinates x, y, z of the centres A of the particles, 
)r, as we shall say, of the coordinates of the particles themselves, 
xnd of the time t. The equations which express the relations between 
? on one hand and x, ?/, z, t on the other, may be replaced by other 
jquations, containing the vectors p' defined by (26) and the quantities 
v', y'j z', t' defined by (4) and (5). Now, by the above assumptions 
i and b, if in a particle A of the moving system, whose coordinates 
ire x, y, z, we find an electric moment |> at the time t, or at the 
ocal time t', the vector p' given by (26) will be the moment which 
ixists in the other system at the true time t' in a particle whose 
loordinates are x', yf, z'. It appears in this way that the equations 
letween p', x', y ', z t '  are the same for both systems, the diffe* 
•ence being only this, that for the system 2 '  without translation



these symbols indicate the moment, the coordinates and the true time, 
whereas their meaning is different for the moving system, p', x' ,y' ,z' ,t' 
being here related to the moment p, the coordinates x, y, z and the 
general time t in the manner expressed by (26), (4) and (5).

It has already been stated that the equation (27) applies to both 
systems. The vector b' will therefore be the same in 2 '  and 2 ,  
provided we always compare corresponding places and times. How
ever, this vector has not the same meaning in the two cases. In 2 '  
it represents the electric force, in 2  it is related to this force in 
the way expressed by (20). We may therefore conclude that the 
electric forces acting, in 2  and in 2 ',  on corresponding particles at 
corresponding instants, bear to each other the relation determined by 
(21). In virtue of our assumption b, taken in connexion with the second 
hypothesis of § 8, the same relation will exist between the “ elastic” 
forces; consequently, the formula (21) may also be regarded as 
indicating the relation between the total forces, acting on corresponding 
electrons, at corresponding ipstants.
- It is clear that the state we have supposed to exist in the moving 
system will really be possible if, in 2  and 2 ',  the products of the 
mass Til and the acceleration of an electron are to each other in the 
same relation as the forces, i. e. if

.......................... (3 2 )

Now, we have for the accelerations

................................. (3 3 )

as may be deduced from (4) and (5), and combining this with (32), 
we find for the masses

If this is compared to (31), it appears that, whatever be the value 
of I, the condition is always satisfied, as regards the masses with 
which we have to reckon when we consider vibrations perpen
dicular to the translation. The only condition we have to impose on 
I is therefore

But, on account of (3), 

so that we must put



( 824 )

The value of the constant must be unity, because we know already 
that, for w =  0, 1 =  1.

We are therefore led to suppose that the influence o f  a translation 
on the dimensions (o f the separate electrons and o f a ■ponderable body 
as a zohole) is confined to those that have the direction o f  the motion, 
these becoming k times smaller than they are in the state o f rest. If 
this hypothesis is added to those we have already made, we may be 
sure that two states, the one in the moving system, the other in the 
same system while at rest, corresponding as stated above, may both be 
possible. Moreover, this correspondence is not limited to the electric 
moments of the particles. In corresponding points that are situated 
either in the aether between the particles, or in that surrounding the 
ponderable' bodies, we shall find at corresponding times the same 
vector &' and, as is easily showp, the same lector I/. We may sum 
up by saying: If, in the system without translation, there is a state 
of motion in which, at a definite place, the components of p, b and 
f) are certain functions of the time, then the same system after it 
has been put in motion (and thereby deformed) can be the seat of 
a state of motion in which, at the corresponding place, the com
ponents of p', &' and V are the same functions of the local time.

There is one point which requires further consideration. The values 
of the masses m, and m, having been deduced from the theory of 
quasi-stationary motion, the question arises, whether we are justified 
in reckoning with them in the case of the rapid vibrations of light. 
Now it is found on closer examination that the motion of an electron 
may be treated as quasi-stationary if it changes very little during 
the time a light-wave takes to travel over a distance equal to the 
diameter. This condition is fulfilled in optical phenomena, because 
the diameter of an electron is extremely small in comparison with 
the wave-length.

$ 11. It is easily seen that the proposed theory can account for a 
large number of facts.

Let us take in the first place the case of a system without trans
lation, in some parts of which we have continually p =  0, t> =  0, 
() =  0. Then, in the corresponding state for the moving system, we 
shall have in corresponding parts (or, as we may say, in the same 
parts of the deformed system) p' =  0, b' =  0, l /= 0 . These equations 
implying *> =  0, b =  0, () =  0, as is seen by (26) and (6), it appears



that those parts which are dark while the system is at rest, will remain 
so after it has been put m motion. It will therefore be impossible 
to detect an influence of the Earth’s motion on any optical experi
ment, made with a terrestrial source of light, in which the geome
trical distribution of light and darkness is observed. Many experi
ments on interference and diffraction belong to this class.

In the second place, if in two points of a system, rays of light 
of the same state of polarization are propagated in the same direction, 
the ratio between the amplitudes in these points may be shown not 
to be altered by a translation. The latter remark applies to those 
experiments in which the intensities in adjacent parts of the field 
of view are compared.

The above conclusions confirm the results I have formerly obtained 
by a similar train of reasoning, in which however the terms of the 
second order were neglected. They also contain an explanation of 
Michelson’s negative result, more general and of somewhat different 
form than the one previously given, and they show why Rayleigh 
and Brace could find no signs of double refraction produced by 
the motion of the Earth.

As to the experiments of Trodton and Noble, their negative result 
becomes at once clear, if we admit the hypotheses of § 8. It may be 
inferred from these and from our last assumption (§10) that the only 
effect of the translation must have been a contraction of the whole 
system of electrons and other particles constituting the charged 
condenser and the beam and thread of the torsion-balance. Such a 
contraction does not give rise to a sensible change of direction.

It need hardly be said that the present theory is put forward with 
all due reserve. Though it seems to me that it can account for all 
well established facts, it leads to some consequences that cannot as 
yet be put to the test of experiment. One of these is that the result 
of MrcHELSON’s experiment must remain negative, if the interfering 
rays of light are made to travel through some ponderable transparent 
body.

Our assumption about the contraction of the electrons cannot in 
itself be pronounced to be either plausible or inadmissible. What 
we know about the nature of electrons is very little and the only 
means of pushing our way farther will be to test such hypotheses 
as 1 have here made. Of course, there will be difficulties, e.g. as soon 
as we come to consider the rotation of electrons. Perhaps we shall 
have to suppose that in those phenomena in which, if there is no 
translation, spherical electrons rotate about a diameter, the points of 
the electrons in the moving system will describe elliptic paths,



corresponding, in the manner specified in § 10, to the circular paths 
described in the other case.

§ 12. It remains to say some words about molecular motion. We 
may conceive that bodies in which this has a sensible influence or 
even predominates, undergo the same deformation as the systems of 
particles of constant relative position of which alone we have spoken 
till now. Indeed, in two systems of molecules 2 '  and 2 ,  the first 
without and the second with a translation, we may imagine molecular 
motions corresponding to each other in such a way that, if a particle 
in 2 '  has a certain position at a definite instant, a particle in 2  
occupies at the corresponding instant the corresponding position. This 
being assumed, we may use the relation (33) between the accelera
tions in all those cases in which the velocity of molecular motion 
is very small as copipared to to. In these cases the molecular forces 
may be taken to be determined by the relative positions, indepen
dently of the velocities of molecular motion. If, finally, we suppose 
these forces to be limited to such small distances that, for particles 
acting on each other, the difference of local times may be neglected, 
one of the particles, together with those which lie in its sphere of 
attraction or repulsion, will form a system which undergoes the 
often mentioned deformation. In virtue of the second hypothesis 
of § 8 we may therefore apply to the resulting molecular force 
acting on a particle, the equation (21). Consequently, the proper 
relation between the forces and the accelerations will exist in the two 
cases, if we suppose that the masses o f  all particles are influenced 
by a translation to the same degree as the eleclromagnetie masses o f  
the electrons.

§ 13. The values (30) which I have found for the longitudinal and 
transverse masses of an electron, expressed in terms of its velocity, are 
not the same as those that have been formerly obtained by Abraham. 
The ground for this difference is solely to be sought in the circum
stance that, in his theory, the electrons are treated as spheres of 
invariable dimensions. Now, as regards the transverse mass, the 
results of Abraham have been confirmed in a most remarkable way 
by K aufmann’s measurements of the deflexion of radium-rays in 
electric and magnetic fields. Therefore, if there is not to be a most 
serious objection to the theory I have now proposed, it must be 
possible to show that those measurements agree with my values 
nearly as well as with those of Abraham.

I shall begin by discussing two of the series of measurements



published by Kaufmann1) in 1902. From each series he has deduced 
two quantities ■>] and g, the “ reduced” electric and magnetic deflexions,

which are related as follows to the ratio

. . . .  (3 4 )

Here (0) is such a function, that the transverse mass is given by

• (35 )

whereas k̂  ank k3 are constant in each series.
It appears from the second of the formulae (30) that my theory 

leads likewise to an equation of the form (35); only Abkaham’s 
function tp (/?) must be replaced by

Hence, my theory requires that, if we substitute this value for 
tf>(0) in (34), these equations shall still 'hold. Of course, in seeking 
to obtain a good agreement, we shall be justified in giving to l\ and ks 
other values than those of Kaufmann, and ui taking for every measure
ment a proper value of the velocity iv, or of the ratio Writing 

3
skv — k\ and ft for tb« "aw vjiIhas we may put (34) in the form

.......................................... (36)

and

...................................(37)
Kaufmann has tested his equations by choosing for k̂  such a value 

that, calculating |? and kt by means of (34), he got values for this 
latter number that remained constant in each series as well as might 
be. This constancy was the proof of a sufficient agreement.

I have followed a similar method, using however some of the 
numbers calculated by Kacfmann. I have computed for each measure
ment the value o f the expression

..................................(3 8 )

that may be got from (37) combined with the second of the equations 
(34). The values of {$) and k3 have been taken from Kaufmann’s 
tables and for /J' I have substituted the value he has found for 0, 
multiplied by s, the latter coefficient being chosen with u view to

l) Kaufmann, Physik. Zeitschr. 4 (1002), p. 55.



obtaining a good constancy of (38). The results are contained in the 
following tables, corresponding to the tables III and IV in Kaufmann's 
paper.  

III. s =  0,933.

β ψ(
β) k2

β'
k'2

0.851 2.147 1.721 0.794 2.246
0.766 1.86 1.736 0.715 2.258

0.727 1.78 1.725 0.078 2.256

0.6615 1.66 1.727 0.617 2.256

0.6075 1.595 1.655 0.567 2.175

The constancy of is seen to come out no less satisfactory than 
that of k3, the more so as in each case the value of s has been 
determined by means of only two measurements. The coefficient has 
been so chosen that for these two observations, which were in Table 
III the first and the last but one, and in Table IY the first and the 
last, the values of h's should be proportional to those of 

I shall next consider two series from a later publication by K a u fm a n n 1), 

which have been calculated by R u n g e 5)  by means of the method of

K aufmann, Goll. Nadir. Matli. phys. Kl., 1903, p. 90.
*) Runge, ibidem, p. 326.

IV. * =  0,954.

β ψ(β) k2 β' k'2

0.903 3.2? 8 -12 0.919 10.36

0.949 2.80 7.99 0.905 9.70

0.933 2.73 7.46 0.890 9.28

0.883 2.31 8.32 0.842 10.36

0.800 2.-193 8.09 0.820 10.15

0.830 2.06 8.13' 0.702 10.23

0.801 1.96 8.13 0.764 10.98

0.777 1.89 8.04 0.741 10.20

0.752 1 83 8.02 0.717 10.22

0,732 -1.785 7.97 0.698 10.18



least squares, the coefficients and k3 having been determined in 
such a way, that the values of v, calculated, for each observed £, 
from Kaufmann’s equations (34), agree as closely as may be with 
the observed values of •»;.

I have determined by the same condition, likewise using the method 
of least squares, the constants a and b in the formula

r

which may be deduced from my equations (36) and (37). Knowing 
a and b, I find /? for each measurement by means of the relation

For two plates on which Kaufmann had measured the electric and 
magnetic deflexions, the results are as follows, the deflexions being 
given in centimeters.

I have not found time for calculating the other tables in Kaufmann’s 
paper. As they begin, like the table for Plate 15, with a rather 
large negative difference between the values of tj which have been 
deduced from the observations and calculated by Runge, we may 
expect a satisfactory agreement with my formulae.

§ 14. I take this opportunity for mentioning an experiment that

Plate N°. 15. a — 0,06489, b =  0,3039.

V 0
s

1
Observed. Calculated 

by R. Diff. Calculated 
by L. Dill’.

Calculat

R.

,ed by 

L

0.1495 0.0388 0 0404 — 16 0.0400 —  12 0.987 0.951

0.190 0.0548 0 0550 — 2 0.0552 — 4 0.964 0.918

0.2475 0 0716 0.0710 + 6 0.0715 +  1 0.930 0.881

0.296 0 0896 0.0887 + 9 0.0895 +  1 0.889 0.842

0.3135 0.1080 0.-1081 — •1 0.1090 —  10 0 847 0.803

0.391 0.1290 0.1297 — 7 0.1305 — 15 0.804 0.763

0.437 0.4524 0.1527 — 3 0.1532 -  8 0.763 0.727

0.48-25 0.1788 0.1777 + 11 0.1777 +  H 0.724 0.692

0.5265 0.2033 0.2039 — 6 0.2033 0 0.688 0.660



Plate N°. 19. a =  0,05867, b =  0,2591.

g

V ft

Observed. Calculated 
by R. Dili'. Calculated 

by L. Diff.
Calculal

R.

ted by 

L.

0.1495 0.0104 0 0388 +  16 0.0379 +25 0.990 0.954

0.199 0.0529 0 0527 2 0 0522 +  7 0.969 0.923

0.247 0 0678 0 0075 + 3> 0.0674 +  4 0.939 0.888

0.296 0.0834 0 0842 — 8 0.0844 —10 0 902 0.849

0.3435 0.1019 0.1022 — 3 0.1026 — 7 0 862 0.811

0.391 0.1219 0.1222 — 3 0 1226 — 7 0 822 0.773

0.437 0.1429 0.1434 — 5 0 1437 — 8 0.782 0.736

0.4825 0 1060 0.1665 — 5 0.1664 — 4 0.744 0.702

0.5205 0 1916 0.1906 +  io 0.1902 +14 0.709 0.671

has been made by T routon ’ ) at the suggestion of F itz G erald, and 
in which it was tried to observe the existence of a sudden impulse 
acting on a condenser at the moment of charging or discharging; 
for this purpose the condenser was suspended by a torsion-balance, 
with its plates parallel to the Earth’s motion. For forming an 
estimate of the effect that may be expected, it will suffice to consider 
a condenser with aether as dielectricum. Now, if the apparatus is 
charged, there will be ($ 1) an electromagnetic momentum

(Terms of the third and higher orders are here neglected). This 
momentum being produced at the moment of charging, and dis
appearing at that of discharging, the condenser must experience in 
the first case an impulse — © and in the second an impulse +  ©.

However T routon has not been able to observe these jerks.
I believe it may be shown (though his calculations have led him 

to a different conclusion) that the sensibility of the appai’atus was 
far from sufficient for the object T routon had in view.

Representing, as before, by U  the energy of the charged condenser

3) Trouton, Dublin Roy. Soc. Trans. (2) 7 (1902), p. 379 (This paper may also 
be found in The scientific writings of Fitz Gerald, edited by Larmor, Dublin and 
London 1902, p. 557).



in the state of rest, and by U -j- XJ' the energy in the slate of motion, 
we have by the formulae of this paper, up to the terms of the 
second order,

an expression, agreeing in order of magnitude with the value used 
by Trouton for estimating the effect.

U'
The intensity of the sudden jerk 01* impulse will therefore be — .

Now, supposing the apparatus to be initially at rest, we may 
compare the deflexion «, produced by this impulse, to the deflexion 
a' which may be given to the torsion-balance by means of a constant 
couple K, acting during half the vibration time. We may also 
consider the case in which a swinging motion has already been set 
up; then the impulse, applied at the moment in which the apparatus 
passes through the position of equilibrium, will alter the amplitude 
by a certain amount and a similar effect (>” may be caused by 
letting the couple K  act during the swing from one extreme position 
to the other. Let T be the period of swinging and I the distance 
from the condenser to the thread of the torsion-balance. Then it is 
easily found that

.............................(39)

According to Trouton’s statements U' amounted to one or two 
ergs, and the smallest couple by which a sensible deflexion could be 
produced was estimated at 7,5 C. Gr. S.-units. If we substitute this 
value for K  and lake into account that the velocity of the Earth’s 
motion is 3 X  10" c.M. per sec., we immediately see that (39) must 
have been a very small fraction.


