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Abstract

In principle, by accepting the idea of a non-zero vacuum energy, the physical vacuum of

present particle physics might represent a preferred reference frame. By treating this quantum

vacuum as a relativistic medium, the non-zero energy-momentum flow expected in a moving

frame should effectively behave as a small thermal gradient and could, in principle, induce a

measurable anisotropy of the speed of light in a loosely bound system as a gas. We explore

the phenomenological implications of this scenario by considering a new class of dedicated

ether-drift experiments where arbitrary gaseous media fill the resonating optical cavities. Our

predictions cover most experimental set up and should motivate precise experimental tests

of these fundamental issues.
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1. Introduction

The idea of a ‘condensed vacuum’ is generally accepted in modern elementary particle physics.

Indeed, in many different contexts one introduces a set of elementary quanta whose pertur-

bative empty vacuum state |o〉 is not the true ground state of the theory. For instance, in

the physically relevant case of the Standard Model of electroweak interactions, the situation

can be summarized by saying that ”What we experience as empty space is nothing but the

configuration of the Higgs field that has the lowest possible energy. If we move from field

jargon to particle jargon, this means that empty space is actually filled with Higgs particles.

They have Bose condensed” [1]. The translation from field jargon to particle jargon can be

obtained, for instance, along the lines of Ref.[2] where the substantial equivalence between

the effective potential of quantum field theory and the energy density of a dilute particle

system was established.

For this reason, it becomes natural to ask [3] if Bose condensation, i.e. the spontaneous

creation from the empty vacuum of elementary spinless quanta and their macroscopic occu-

pation of the same quantum state, say k = 0 in some reference frame Σ, might represent the

operative construction of a ”quantum ether”. This would characterize the physically realized

form of relativity and could play the role of preferred frame in a modern Lorentzian approach.

Usually this possibility is not considered with the motivation, perhaps, that the average

properties of the condensed phase are summarized into a single quantity that transforms as

a world scalar under the Lorentz group. For instance, in the Standard Model, the vacuum

expectation value 〈Φ〉 of the Higgs field.

However, this does not imply that the vacuum state itself has to be Lorentz invariant.

Namely, Lorentz transformation operators Û ′, Û ′′,..might transform non trivially the reference

vacuum state |Ψ(0)〉 (appropriate to an observer at rest in Σ) into |Ψ′〉, |Ψ′′〉,.. (appropriate

to moving observers S’, S”,..) and still, for any Lorentz-invariant operator Ĝ, one would find

〈Ĝ〉Ψ(0) = 〈Ĝ〉Ψ′ = 〈Ĝ〉Ψ′′ = .. (1)

The possibility of a non-Lorentz-invariant vacuum state was addressed in Ref.[4] by consid-

ering two basically different approaches. In a first description, by following the axiomatic

approach to quantum field theory [5], the vacuum is described as an eigenstate of the energy-

momentum vector. Therefore, by observing that (with the exception of unbroken supersym-

metries) there are no known interacting theories with a vanishing vacuum energy, and using

the Poincaré algebra of the boost and energy-momentum operators, one deduces that the

physical vacuum cannot be a Lorentz-invariant state and that, in any moving frame, there
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should be a non-zero vacuum spatial momentum 〈P̂i〉Ψ′ 6= 0 along the direction of motion. In

this way, for a moving observer S’ the physical vacuum would look like some kind of ethereal

medium for which, in general, one can introduce a momentum density 〈Ŵ0i〉Ψ′ through the

relation (i=1,2,3)

〈P̂i〉Ψ′ ≡

∫

d3x 〈Ŵ0i〉Ψ′ 6= 0 (2)

On the other hand, in an alternative picture where one assumes the following form of the

vacuum energy-momentum tensor [6, 7]

〈Ŵµν〉Ψ(0) = ρv ηµν (3)

(ρv being a space-time independent constant and ηµν = diag(1,−1,−1,−1)), one is driven to

completely different conclusions. In fact, by introducing the Lorentz transformation matrices

Λµ
ν to any moving frame S’, defining 〈Ŵµν〉Ψ′ through the relation

〈Ŵµν〉Ψ′ = Λσ
µΛρ

ν 〈Ŵσρ〉Ψ(0) (4)

and using Eq.(3), it follows that the expectation value of Ŵ0i in any boosted vacuum state

|Ψ′〉 vanishes, just as it vanishes in |Ψ(0)〉, i.e.
∫

d3x 〈Ŵ0i〉Ψ′ ≡ 〈P̂i〉Ψ′ = 0 (5)

As discussed in Ref.[4], both approaches have their own good motivations and it is not so

obvious to decide between Eq.(2) and Eq.(5) on pure theoretical grounds.

At the same time, checking the Lorentz invariance of the physical vacuum by an explicit

microscopic calculation, in the realistic case of the Standard Model, seems to go beyond the

present possibilities. To this end, in fact, one should construct the transformed vacuum state

|Ψ′〉 by acting with the appropriate boost generator on the reference condensed vacuum state

|Ψ(0)〉. Even disposing, at least in the simplified case of spontaneous symmetry breaking in a

pure scalar theory [8], of a non-perturbative ansatz for |Ψ(0)〉, as a coherent state expressed

in terms of the creation and annihilations operators a†p and ap of the trivial empty vacuum

state |o〉, one is faced with a serious problem: the standard second-quantized form of the

boost generators

M̂0i = i

∫

d3p

(2π)3
a†
p

ω(p)
∂

∂pi
ap (6)

is only valid for a free-field theory. For an interacting theory, the explicit construction of the

boost generators is only known in perturbation theory (see e.g. [9, 10] and references quoted

therein) and thus this type of approximation could hardly be trusted in the presence of non-

perturbative phenomena such as vacuum condensation. In addition, even in perturbation
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theory, the elimination of ultraviolet divergences in global operators represents a delicate

task so that only very simple theories or low-dimensionality cases have been worked out so

far. For these reasons, deciding on the Lorentz-invariance of the condensed vacuum of present

particle physics represents a highly non-trivial problem.

Alternatively, one might argue that a satisfactory solution of the vacuum-energy problem

lies definitely beyond flat space. A non-zero ρv, in fact, will induce a cosmological term in Ein-

stein’s field equations and a non-vanishing space-time curvature which anyhow dynamically

breaks global Lorentz symmetry.

Nevertheless, in our opinion, in the absence of a consistent quantum theory of gravity,

physical models of the vacuum in flat space can be useful to clarify a crucial point that,

so far, remains obscure: the huge renormalization effect that is seen when comparing the

typical vacuum-energy scales of modern particle physics with the experimental value of the

cosmological term needed in Einstein’s equations to fit the observations. For instance, the

picture of the vacuum as a superfluid explains in a natural way why there might be no non-

trivial macroscopic curvature in the equilibrium state where any liquid is self-sustaining [11].

In this framework, the condensation energy of the medium plays no observable role so that

the relevant curvature effects may be orders of magnitude smaller than those expected by

solving Einstein’s equations with the full 〈Ŵµν〉Ψ(0) as a source term. In this perspective,

“induced-gravity” [12] approaches, where gravity somehow arises from the excitations of the

quantum vacuum itself, may become natural and, to find the appropriate form of the energy-

momentum tensor in Einstein’s equations, we are lead to sharpen our understanding of the

vacuum structure and of its excitation mechanisms by starting from the physical picture of

a superfluid medium.

By following this approach, in Ref.[4], to explore the possible effects of the energy-

momentum flow expected in a moving frame according to Eq.(2), it was adopted a phe-

nomenological two-fluid model in which the quantum vacuum, in addition to the main zero-

entropy superfluid component, contains a small fraction of “normal” fluid. This is responsible

for a non-zero 〈Ŵ0i〉Ψ′ and gives rise to a small heat flow and to an effective thermal gradient

∂T

∂xi
≡ −

〈W0i〉Ψ′

κ0
(7)

Here κ0 is an unknown parameter, introduced for dimensional reasons, that plays the role of

thermal conductivity of the vacuum. Since its value is unknown, the effective thermal gradient

is left as an entirely free quantity whose magnitude should be constrained by experiments.

In principle, this effective gradient could induce small convective currents in a loosely

bound system as a gaseous medium (placed in a container at rest in the laboratory frame)
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and produce a slight anisotropy of the speed of light in the gas. On the other hand, for a

strongly bound system, such as a solid or liquid transparent medium, the small energy flow

generated by the motion with respect to the vacuum condensate should dissipate mainly by

heat conduction with no particle flow and no light anisotropy in the rest frame of the medium,

in agreement with the classical experiments in glass and water.

For this reason, one should design a new class of ether-drift experiments where two optical

cavities are filled with a gas and study the frequency shift ∆ν between the two resonators that

gives a measure of the possible anisotropy of the two-way speed of light. Such a type of ”non-

vacuum” experiment would be along the lines of Ref.[13] where just the use of optical cavities

filled with different materials was considered as a useful tool to study possible deviations

from Lorentz invariance.

The aim of this paper is to give a set of precise predictions for this new class of ether-drift

experiments. In Sect.2 we shall provide a definite model for the two-way speed of light. In

Sect.3, we shall discuss various experimental set up and the expected form of the signal.

Finally, in Sect.4 we shall present our summary and conclusions.

2. The two-way speed of light in a gaseous medium

Rigorous treatments of light propagation in dielectric media are based on the extinction theory

[14]. This was originally formulated for continuous media where the interparticle distance

is smaller than the light wavelength. In the opposite case of an isotropic, dilute random

medium [15], it is relatively easy to compute the scattered wave in the forward direction and

obtain the refractive index. However, if there are convective currents, taking into account

the motion of the molecules that make up the gas is a non-trivial problem. If solved, one

expects an angular dependence of the refractive index and an anisotropy of the phase speed

of the refracted light.

This expectation derives from a much simpler, semi-quantitative approach where one

introduces from scratch the refractive index N of the gas and the time t spent by refracted

light to cover some given distance L within the medium. By assuming isotropy, one would

find t = NL/c. This can be expressed as the sum of t0 = L/c and t1 = (N − 1)L/c where t0

is the same time as in the vacuum and t1 represents the additional, average time by which the

refracted light is “slowed” down by the presence of matter. If there are convective currents,

so that t1 is different in different directions, one can deduce an anisotropy of the speed of

light proportional to (N −1). To see this, let us consider light propagating in a 2-dimensional
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plane and express t1 as

t1 =
L

c
f(N , θ, β) (8)

with β = V/c, V being the velocity of the laboratory with respect to the preferred frame Σ

where the isotropic form

f(N , θ, 0) = N − 1 (9)

is assumed. By expanding around N = 1 where, whatever β, f vanishes by definition, one

finds for gaseous systems (where N − 1 ≪ 1) the universal trend

f(N , θ, β) ∼ (N − 1)F (θ, β) (10)

with

F (θ, β) ≡ (∂f/∂N )|N=1 (11)

and F (θ, 0) = 1. Therefore, from

t(N , θ, β) =
L

c(N , θ, β)
∼

L

c
+

L

c
(N − 1) F (θ, β) (12)

one gets

c(N , θ, β) ∼
c

N
[1 − (N − 1) (F (θ, β) − 1)] (13)

Analogous relations hold for the two-way speed of light c̄(N , θ, β)

c̄(N , θ, β) =
2 c(N , θ, β)c(N , π + θ, β)

c(N , θ, β) + c(N , π + θ, β)
∼

c

N

[

1 − (N − 1)

(

F (θ, β) + F (π + θ, β)

2
− 1

)]

(14)

that is commonly measured in optical resonators. In this case, one predicts a non-zero

anisotropy
∆c̄θ

c
≡

c̄(N , π/2, β) − c̄(N , 0, β)

c
∼ (N − 1)

∆F

2
(15)

with ∆F = F (0, β) + F (π, β) − F (π/2, β) − F (3π/2, β) and the characteristic scaling law

∆c̄θ(N )

∆c̄θ(N ′)
∼

N − 1

N ′ − 1
(16)

More quantitative estimates can be obtained by exploring some general properties of the

function F (θ, β). By expanding in powers of β

F (θ, β) − 1 = βF1(θ) + β2F2(θ) + ... (17)

and taking into account that, by the very definition of two-way speed, c̄(N , θ, β) = c̄(N , θ,−β),

it follows that F1(θ) = −F1(π + θ). Therefore, we get the general structure of the two-way

speed of light to O(β2)

c̄(N , θ, β) ∼
c

N

[

1 − (N − 1) β2
∞
∑

n=1

ζ2nP2n(cos θ)

]

(18)
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in which we have expressed the combination F2(θ) + F2(π + θ) as an infinite expansion of

even-order Legendre polynomials with unknown coefficients ζ2n = O(1).

This general structure can be compared with the corresponding result [16] obtained by

using Lorentz transformations to connect S’ to the preferred frame

c̄(N , θ, β) ∼
c

N
[1 − β2 (A + B sin2 θ)] (19)

with

A ∼ 2(N − 1) B ∼ −3(N − 1) (20)

that corresponds to set in Eq.(18) ζ2 = 2 and all ζ2n = 0 for n > 1. Eqs.(19)-(20), that

represent a definite realization of the general structure in (18), provide a partial answer to

the problems posed by our limited knowledge of the electromagnetic properties of gaseous

systems and will be adopted in the following as our basic model for the two-way speed of

light.

Notice that Eqs.(19)-(20) lead to

∆c̄θ(N )

c
∼ 3(N − 1)

V 2

c2
(21)

and thus Eq.(16) is identically satisfied. At the same time, one gets agreement with the pat-

tern observed in the classical and modern ether-drift experiments, as illustrated in Refs.[16],

that suggests (for gaseous media only) a relation of the type in Eq.(21). In fact, in the classi-

cal experiments performed in air at atmospheric pressure, where N ∼ 1.000293, the observed

anisotropy was ∆c̄θ

c
. 10−9 thus providing a typical value V/c ∼ 10−3, as that associated

with most cosmic motions. Analogously, in the classical experiments performed in helium at

atmospheric pressure, where N ∼ 1.000035 (and in a modern experiment with He-Ne lasers

where N ∼ 1.00004), the observed effect was ∆c̄θ

c
. 10−10 so that again V/c ∼ 10−3.

Notice also that, although originating from a different theoretical framework, Eq.(19) is

formally analogous to the expression of the two-way speed of light in the RMS formalism

[17, 18] where A and B are taken as free parameters.

One conceptual detail concerns the gas refractive index whose reported values are experi-

mentally measured on the earth by two-way measurements. For instance for the air, the most

precise determinations are at the level 10−7, say Nair = 1.0002926.. for yellow light at STP

(Standard Temperature and Pressure). By assuming a non-zero anisotropy in the earth’s

frame, one should interpret the isotropical value c/Nair as an angular average of Eq.(19), i.e.

c

Nair
≡ 〈c̄(N̄air, θ, β)〉 =

c

N̄air
[1 −

1

2
(N̄air − 1)

V 2

c2
] (22)
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From this relation, one can determine the unknown value N̄air ≡ N (Σ) (as if the gas were

at rest in Σ), in terms of the experimentally known quantity Nair ≡ N (earth) and of V .

In practice, for the standard velocity values involved in most cosmic motions, say 200 km/s

≤ V ≤ 400 km/s, the difference between N (Σ) and N (earth) is well below 10−9 and thus

completely negligible. The same holds true for the other gaseous systems at STP (say nitro-

gen, carbon dioxide, helium,..) for which the present experimental accuracy in the refractive

index is, at best, at the level 10−6. Finally, the isotropic two-way speed of light is better

determined in the low-pressure limit where (N − 1) → 0. In the same limit, for any given

value of V , the approximation N (Σ) = N (earth) becomes better and better.

3. Ether-drift experiments in gaseous media

From the point of view of ether-drift experiments, the crucial ingredient, that might indicate

the existence of a preferred frame, consists in detecting the characteristic modulations of the

signal due to the earth’s rotation. Descriptions of this important effect are already available

in the literature. For instance, within the SME model [19] the relevant formulas are given

in the appendix of Ref.[20] and for the RMS test theory [17, 18] one can look at Ref.[21].

However, either due to the great number of free parameters (19 in the SME model) and/or to

the restriction to a definite experimental set up, it is not always easy to adapt these papers to

the actual conditions needed for our experimental test. For this reason, in the following, we

will present a set of compact formulas that can be immediately used by the reader to evaluate

the signal when two arbitrary gaseous media fill the resonating cavities. The formalism covers

most experimental set up including the very recent type of experiment proposed in Ref.[22]

to perform tests of the Standard Model.

The main point is that the earth’s rotation enters only through two quantities, v = v(t)

and θ0 = θ0(t), respectively the magnitude and the angle associated with the projection of

the unknown cosmic earth’s velocity V in the plane of the interferometer.

Once the angle θ0 is conventionally defined when one of the arms of the interferometer is

oriented to the North point in the laboratory (counting θ0 from North through East so that

North is θ0 = 0 and East is θ0 = π/2), we can immediately use the formulas given by Nassau

and Morse [23]. These are valid for short-term observations, say 3-4 days, where there are

no appreciable changes in the cosmic velocity due to changes in the earth’s orbital velocity

around the Sun and the only time dependence is due to the earth’s rotation.

In this approximation, introducing the magnitude V of the full earth’s velocity with

respect to a hypothetic preferred frame Σ, its right ascension α and angular declination γ,
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we get

cos z(t) = sin γ sin φ + cos γ cos φ cos(τ − α) (23)

sin z(t) cos θ0(t) = sin γ cos φ − cos γ sin φ cos(τ − α) (24)

sin z(t) sin θ0(t) = cos γ sin(τ − α) (25)

v(t) = V sin z(t), (26)

Here z = z(t) is the zenithal distance of V. Namely, z = 0 corresponds to a V which is

perpendicular to the plane of the interferometer and z = π/2 to a V that lies entirely in that

plane. Further, φ is the latitude of the laboratory and τ = ωsidt is the sidereal time of the

observation in degrees (ωsid ∼ 2π
23h56′

).

Let us now consider two orthogonal cavities oriented for simplicity North-South (cavity 1)

and East-West (cavity 2) in the laboratory frame. They are filled with two different gaseous

media with refractive indices Ni (i=1,2) such that Ni = 1+ǫi, and 0 ≤ ǫi ≪ 1. The frequency

in each cavity is

νi(θi) = c̄i(Ni, θi, β)ki (27)

and the frequency shift is

∆ν = ν1(θ1) − ν2(θ2) (28)

In the above relations we have introduced the parameters ki

ki =
mi

2Li
(29)

where mi are integers fixing the cavity modes and Li are the cavity lengths. Finally, θi is the

angle between V and the axis of the i-th cavity and c̄i(Ni, θi, β) denote the two-way speeds

of light in (19).

We observe that, in the presence of an effective vacuum thermal gradient, one might also

consider pure thermal conduction effects in the solid parts of the apparatus. Even by using

cavities with an ultra-low thermal expansion coefficient, these conduction effects could induce

tiny differences of the cavity lengths (and thus of the cavity frequencies) upon active rotations

of the apparatus or under the earth’s rotation. However, this effect does not depend on the gas

that fills the cavity and therefore can be preliminarily evaluated and subtracted out by first

running the experiment in the vacuum mode, i.e. at the same room temperature but when

no gas is present inside the cavities. The precise experimental limits of Ref.[24] (obtained

with vacuum cavities at room temperature) show that any such effect can be reduced to the

level 10−15 − 10−16 and thus would be irrelevant for our purpose. In fact, as we shall show
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in a moment, the typical magnitudes of the signal, expected by running the experiments in

the gaseous mode, should be larger by 4-5 orders of magnitude.

By introducing the unit vectors n̂i that fix the direction of the two cavities and the

projection v of the full V in the interferometer’s plane, one finds

V 2 sin2 θi = V 2(1 − cos2 θi) = V 2 − (n̂i · v)2 (30)

so that (v = |v|)

V 2 sin2 θ1 = V 2 − v2 cos2 θ0 (31)

and

V 2 sin2 θ2 = V 2 − v2 sin2 θ0 (32)

Therefore, by defining the reference frequency ν0 = ck1
N1

and introducing the parameter ξ

through

ξ =
N1k2

N2k1
(33)

one finds the relative frequency shift

∆ν(t)

ν0
= 1 − ξ +

V 2

c2
[ξ(A2 + B2) − (A1 + B1)] +

v2(t)

c2
[B1 cos2 θ0(t) − ξB2 sin2 θ0(t)] (34)

For a symmetric apparatus where N1 = N2, A1 = A2, B1 = B2 = B and ξ = 1, one finds

∆ν(t)symm

ν0
= B

v2(t)

c2
cos 2θ0(t) (35)

On the other hand for a non-symmetric apparatus of the type considered in Ref.[22] with

L1 = L2 = L, but where one can conveniently arrange N1 = 1 (up to negligible terms) so

that A1 ∼ B1 ∼ 0, denoting N2 = N , A2 = A, B2 = B, m2
m1

= P, we find

∆ν(t)

ν0
= 1 −

P

N
+

P

N

V 2

c2
(A + B) − B

P

N

v2(t)

c2
sin2 θ0(t) (36)

To consider experiments where one or both resonators are placed in a state of active rotation

(at a frequency ωrot ≫ ωsid), it is convenient to modify Eq.(34) by rotating the resonator 1

by an angle δ1 and the resonator 2 by an angle δ2 so that the last term in Eq.(34) becomes

v2(t)

c2
[B1 cos2(δ1 − θ0(t)) − ξB2 sin2(δ2 − θ0(t))] (37)

Therefore, in a fully symmetric apparatus where N1 = N2, A1 = A2, B1 = B2 = B and ξ = 1

and both resonators rotate, as in Ref.[25], setting

δ1 = δ2 = ωrott (38)
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one obtains
∆ν(t)symm

ν0
= B

v2(t)

c2
cos 2(ωrott − θ0(t)) (39)

On the other hand, if only one resonator rotates, as in Ref.[24], setting δ1 = 0 and δ2 = ωrott

one obtains the alternative result

∆ν(t)

ν0
= B

v2(t)

2c2
[cos 2θ0(t) + cos 2(ωrott − θ0(t))] (40)

By first filtering the signal at the frequency ω = ωrot ≫ ωsid, the main difference between the

two expressions is an overall factor of two.

Let us now return to the general case of a non-rotating set up Eq.(34). Using Eqs.(23)-(26)

we obtain the simple Fourier expansion

∆ν(t)

ν0
= 1 − ξ + (g0 + g1 sin τ + g2 cos τ + g3 sin 2τ + g4 cos 2τ) (41)

where

g0 =
V 2

c2
[ξ(A2 + B2) − (A1 + B1) + B1(sin

2 γ cos2 φ +
1

2
cos2 γ sin2 φ) −

1

2
ξB2 cos2 γ] (42)

g1 = −
1

2

V 2

c2
B1 sin 2γ sin 2φ sin α g2 = −

1

2

V 2

c2
B1 sin 2γ sin 2φ cos α (43)

g3 =
1

2

V 2

c2
(B1 sin2 φ+ξB2) cos2 γ sin 2α g4 =

1

2

V 2

c2
(B1 sin2 φ+ξB2) cos2 γ cos 2α (44)

Since the mean signal is most likely affected by systematic effects, one usually concentrates

on the daily modulation. In this case, assuming that g1, g2, g3 and g4 can be extracted to

good accuracy from the experimental data, one can try to obtain a pair of angular variables

through the two independent determinations of α

tan α =
g1

g2
tan 2α =

g3

g4
(45)

and the relation

tan |γ| =
|B1 sin2 φ + ξB2|

|2B1 sin 2φ|

√

g2
1 + g2

2

g2
3 + g2

4

(46)

Notice that Eqs.(42)-(44) remain unchanged under the replacement (α, γ) → (α + π,−γ).

Also, two dynamical models that predict the same anisotropy parameters up to an overall

re-scaling Bi → λBi would produce the same |γ| from the experimental data.

Finally for a symmetric apparatus, where B1 = B2 = B and ξ = 1, one obtains the

simpler relation

tan |γ| =
1 + sin2 φ

|2 sin 2φ|

√

g2
1 + g2

2

g2
3 + g2

4

(47)
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where any reference to the anisotropy parameters drops out.

To obtain some order of magnitude estimate, let us consider the amplitude of the modu-

lation of the signal at the sidereal frequency for a typical latitude of the laboratory |φ| ∼ 45o.

This is given by

gωsid
=

√

g2
1 + g2

2 =
1

2

V 2

c2
|B1 sin 2γ| (48)

By assuming the cavity 1 to be filled with carbon dioxide (whose refractive index at atmo-

spheric pressure is N1 ∼ 1.00045) and the typical value V 2

c2
∼ 10−6 (associated with most

cosmic motions) one expects a typical modulation of the relative frequency shift gωsid
∼ 10−10.

Analogously, for helium at atmospheric pressure (where N1 ∼ 1.000035) one expects gωsid
∼

10−11. As anticipated, these values would be 4−5 orders of magnitude larger than the limit

10−15 − 10−16 placed by the present ether-drift experiments in vacuum.

4. Summary and conclusions

In principle, on the basis of very general arguments related to a non-zero vacuum energy, the

physical condensed vacuum of present particle physics might represent a preferred reference

frame. In this case, in any moving frame there might be a non-zero vacuum energy-momentum

flow along the direction of motion. By treating the quantum vacuum as a relativistic medium,

this non-zero energy-momentum flow should behave as an effective thermal gradient. As such,

it could induce small convective currents in a loosely bound system as a gas and an anisotropy

of the speed of light.

For this reason, we have considered in this paper a new class of ether-drift experiments

in which optical resonators are filled by gaseous media. The existence of convective currents

leads to the general structure of the two-way speed in Eq.(18) that admits Eqs.(19)-(20) as

a special case.

In this particular limit, by using the basic relations (23)-(26) to take into account the

effect of the earth’s rotation, we have derived a set of definite predictions that cover most

experimental set up. For the typical velocities involved in most cosmic motions, the expected

relative frequency shift between the two resonators should be about 4−5 orders of magnitude

larger than the limit 10−15 − 10−16 placed by the present ether-drift experiments in vacuum.

We want to emphasize that, due to the limited precision characterizing our knowledge of

the electromagnetic properties of gaseous media, that forces us to restrict to relations (19)-

(20) for the two-way speed, we cannot exclude the existence of other competing mechanisms

that, while physically different from our proposed drift of the vacuum energy, may simulate
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the same effects. For instance, a similar direction dependence of the refractive index might

also be introduced if the molecules in the gas exhibit no net motion but instead a suitable

non-isotropic local interaction of the incoming radiation with the medium is introduced, for

instance within the more general framework of the SME model [19]. In this case, there might

be non-equivalent ways to obtain the same characteristic experimental signatures.

Still, we believe that our picture of light anisotropy, as arising from the convective cur-

rents that can be established in dilute systems, provides a simple theoretical framework to

understand why Eq.(21), while being consistent with the pattern observed in gaseous sys-

tems, does not apply to Michelson-Morley experiments performed in solid transparent media

[26] as perspex (where N ∼ 1.5).

In any case, exploring the class of scenarios consistent with Eqs.(19)-(20) leads to consider

the following experimental checks:

i) for a symmetric apparatus one should try to extract from the data the product

H = B V 2

c2
and, by using Eqs.(45) and (47), two pairs of conjugate angular variables (α, γ)

(α + π,−γ). Also, by suitably changing the gaseous medium (and its pressure) within the

cavities, one should try to check the precise trend predicted in Eqs.(16) and (20), namely

H ′

H ′′
∼

N ′ − 1

N ′′ − 1
(49)

ii) for a non-symmetric apparatus of the type proposed in Ref.[22], where one can con-

veniently fix the cavity oriented North-South to have N1 = 1 (up to negligible terms), by

using Eqs.(20) one predicts B1 ∼ 0 in Eqs.(43) and (44) so that all time dependence should

be due to B2. Thus the modulation of the signal should be a pure ω = 2ωsid effect with no

appreciable contribution at ω = ωsid

iii) for a deeper analysis, one should keep in mind that, in each single session, the

direction (α, γ) cannot be distinguished from the opposite direction (α + π,−γ). For this

reason, a whole set j=1,2..M of short-term experimental sessions should be performed in

different periods along the earth’s orbit to obtain an overall consistency check. Notice that,

for a complete description of the observations over a one-year period, it is not necessary to

modify the simple formulas Eqs.(42)-(44) and introduce explicitly the further modulations

associated with the orbital frequency Ωorb ∼ 2π
1 year . Rather, by plotting on the celestial sphere

all directions defined by the (αj , γj) pairs obtained in the various short-term observations,

one can try to reconstruct the earth’s “aberration circle”. If this will show up, by using the

formulas of the spherical triangles, one will be able to determine the mean cosmic velocity

〈V 〉 from the angular opening of the circle and the known value of the earth’s orbital velocity

12



∼ 30 km/s. In this way, given the value of 〈H〉, one will be able to disentangle 〈V 〉 from B

and estimate the absolute magnitude of the anisotropy parameter.
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