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Abstract

Modern ether-drift experiments look for a preferred frame by measuring the difference ∆ν in

the relative frequencies of two cavity-stabilized lasers, upon local rotations of the apparatus

or under the Earth’s rotation. If the small deviations observed in the classical ether-drift

experiments were not mere instrumental artifacts, by replacing the high vacuum in the res-

onating cavities with a dielectric gaseous medium (e.g. air), the typical measured ∆ν ∼ 1 Hz

should increase by orders of magnitude. This prediction is consistent with the characteristic

modulation of a few kHz observed in the original experiment with He-Ne masers. However,

if such enhancement would not be confirmed by new and more precise data, the existence of

a preferred frame can be definitely ruled out.
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1. The controversy about the existence of a preferred reference frame dates back to the

birth of the Theory of Relativity, i.e. to the basic differences between Einstein’s Special

Relativity [1] and the Lorentz-Poincaré point of view [2, 3]. Today the former interpretation

is generally accepted. However, the conceptual relevance of retaining a physical substratum

as an important element of the physical theory [4], may induce to re-discover the potentially

profound implications of the latter [5, 6]. For instance, replacing the empty space-time of

Special Relativity with a preferred frame, one gets a different view of the non local aspects

of the quantum theory, see Refs.[7, 8].

Another argument that might induce to re-consider the idea of a preferred frame was given

in Ref.[9]. The argument was based on the simultaneous presence of two ingredients that are

often found in present-day elementary particle physics, namely: a) vacuum condensation, as

with the Higgs field in the electroweak theory, and b) an approximate form of locality, as with

cutoff-dependent, effective quantum field theories. In this case, one is faced with ‘reentrant

violations of special relativity in the low-energy corner’ [10]. These are deviations at small

momenta |p| < δ where the infrared scale δ vanishes, in units of the Lorentz-invariant scale

M of the theory, only in the local limit of the continuum theory Λ
M

→ ∞, Λ being the

ultraviolet cutoff. A simple interpretation of the phenomenon, in the case of a condensate

of spinless quanta, is in terms of density fluctuations of the system [11, 12], the continuum

theory corresponding to the incompressibility limit. The resulting picture of the ground state

is closer to a medium with a non-trivial refractive index [9] than to the empty space-time of

Special Relativity.

Therefore, in the presence of a non-trivial vacuum, it is natural to explore whether the

physically realized form of the Theory of Relativity is closer to the Einstein’s formulation or to

the original Lorentzian approach with a preferred frame. In other words, the same relativistic

effects between two observers S′ and S′′, rather than being due to their relative motion, might

be interpreted as arising from their individual motion with respect to some preferred frame Σ.

This equivalence is a simple consequence of the group structure of Lorentz transformations,

where the relative velocity parameter βrel connecting S′ to S′′ can be expressed in terms of

the individual velocity parameters β′ and β′′ respectively relating S′ and S′′ to Σ as

βrel =
β′ − β′′

1 − β′β′′
(1)

(we restrict for simplicity to one-dimensional motions).

In this perspective, the crucial question becomes the following: can the individual param-

eters β′ and β′′ be determined separately through ether-drift experiments ? Accepting the
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standard ‘null-result’ interpretation of this type of experiments, this is not possible. There-

fore, if really only βrel is experimentally measurable, one is driven to conclude (as Einstein

did in 1905 [1]) that the introduction of a preferred frame is ‘superfluous’, all effects of Σ

being re-absorbed into the relative space-time units of any pair (S′, S′′).

On the other hand, if the ether-drift experiments give a non-null result, so that β′ and

β′′ can be separately determined, then the situation is completely different. In fact, now βrel

is a derived quantity and the Lorentzian point of view is uniquely singled out.

Due to the importance of the problem, we have first re-considered the classical ether-drift

experiments, our main motivation being that, according to some authors, their standard null-

result interpretation is not so obvious. The fringe shifts observed in the various Michelson-

Morley type of experiments, although smaller than the classical predictions, were never really

negligibly small. Interpreting these small deviations on the base of Ref.[9], a narrow experi-

mental window might still be compatible with the existence of a preferred frame.

After this first part, we have concentrated our analysis on the modern ether-drift experi-

ments, those where the observation of the interference fringes is replaced by the difference ∆ν

in the relative frequencies of two cavity-stabilized lasers upon local rotations of the apparatus

[13] or under the Earth’s rotation [14]. It turns out that, even in this case, the most recent

data [14] leave some space for a non-null interpretation of the experimental results.

For this reason, we shall propose a sharp experimental test that can definitively decide

about the existence of a preferred frame. If the small deviations found in the classical ex-

periments were not mere instrumental artifacts, by replacing the high vacuum used in the

resonating cavities with a dielectric gaseous medium, the typical frequency of the signal

should increase from values ∆ν ∼ 1 Hz up to ∆ν ∼ 100 kHz, using air, or up to ∆ν ∼ 10

kHz, using helium. The latter prediction appears to be consistent with the characteristic

modulation of a few kHz in the magnitude of the ∆ν’s observed by Jaseja et al. [15] using

He-Ne masers.

2. A non-null result of the original Michelson-Morley [16] experiment was strongly ad-

vocated by Hicks [17] long time ago. The same conclusion was obtained by Miller after his

re-analysis of the Michelson-Morley data, of the Morley-Miller [18] experiments and of his

own measurements at Mt.Wilson, see Fig.4 of Ref.[19]. Miller’s refined analysis showed that

all data were consistent with an effective, observable velocity lying in the range 7-10 km/s,

say

vobs ∼ 8.5 ± 1.5 km/s (2)
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For comparison, the Michelson-Morley experiment gave a value vobs ∼ 8.8 km/s for the noon

observations and a value vobs ∼ 8.0 km/s for the evening observations. As the fringe shifts

grow quadratically with the velocity, their typical magnitude was (8.5/30)2 ∼ 1/13 of that

expected, on the base of classical physics, for the Earth’s orbital velocity of 30 km/s.

The difference of the value in Eq.(2) with respect to the original conclusion of Michelson-

Morley (vobs certainly smaller than 1/4 of the Earth’s orbital velocity [16]), can partly be

understood looking at the conclusions of the Hicks’ study [17]: one is not allowed to average

data of different experimental sessions unless one is sure that the direction of the ether-

drift effect remains the same (see page 34 of [17] “It follows that averaging the results of

different days in the usual manner is not allowable...If this is not attended to, the average

displacement may be expected to come out zero...”). In other words, the ether-drift, if it

exists, has a vectorial nature. Therefore, rather than averaging the raw data from the various

sessions, one should first consider the data from the i-th experimental session and extract

the observable velocity vobs(i) and the ether-drift direction θo(i) for that session. Finally, a

mean magnitude 〈vobs〉 and a mean direction 〈θo〉 can be obtained by averaging the individual

determinations (see Figs. 22 of Ref.[19]).

Now, following the latter strategy, the magnitude of the observable velocity comes out

to be larger, its error becomes smaller so that the evidence for an ether-drift effect becomes

stronger (see page 36 of Ref.[17] “ ...this naturally leads to the reconsideration of the numerical

data obtained by Michelson and Morley, who did lump together the observations taken in

different days. I propose to show that, instead of giving a null result, the numerical data

published in their paper show distinct evidence of an effect of the kind to be expected”).

The same was true for the Morley-Miller data [18]. In this case, the morning and evening

observations each were indicating an effective velocity of about 7.5 km/s (see Fig.11 of

Ref.[19]). This indication was completely lost after averaging the raw data as in Ref.[18].

Finally, the same point of view has been advocated by Múnera in his recent re-analysis of

the classical experiments [20].

3. Now, suppose we accept the value in Eq.(2) to summarize the results of the Michelson-

Morley, Morley-Miller and Miller experiments. As these were performed in air, it would mean

that the measured two-way speed of light differs from an exactly isotropical value

uair =
c

Nair

(3)

Nair denoting the refractive index of the air. Namely, for an observer placed on the Earth
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(where the air is at rest or more precisely in thermodynamical equilibrium) the experiments

say that there is a small anisotropy at the level O(
v2

obs

c2
) ∼ 10−9 so that the isotropical value

Eq.(3) is only accurate at a lower level of accuracy, say ∼ 10−8.

On the other hand, for the Kennedy’s [21] experiment, where the whole optical system

was inclosed in a sealed metal case containing helium at atmospheric pressure, the observed

anisotropy was definitely smaller. In fact, the accuracy of the experiment, such to exclude

fringe shifts as large as 1/4 of those expected on the base of Eq.(2) (or 1/50 of that expected

on the base of a velocity of 30 km/s) allows to place an upper bound vobs < 4 km/s. This is

confirmed by the re-analysis of the Illingworth’s experiment [22] performed by Mùnera [20]

who pointed out some incorrect assumptions in the original analysis of the data. From this

re-analysis, the relevant observable velocity turns out to be vobs = 3.1 ± 1.0 km/s (errors at

the 95% C.L.) [20], with typical fringe shifts that were 1/100 of that expected for a velocity of

30 km/s. Again, this means that, for an apparatus filled with gaseous helium at atmospheric

pressure, the measured two-way speed of light differs from the exactly isotropical value c

Nhelium

by terms O(
v2

obs

c2
) ∼ 10−10.

Finally, for the Joos experiment [23], performed in an evacuated housing and where any

ether-wind was found smaller than 1.5 km/s, the typical value vobs ∼ 1 km/s means that, in

that particular type of vacuum, the fringe shifts were smaller than 1/400 of those expected

for an Earth’s velocity of 30 km/s and the anisotropy of the two-way speed of light was at

the level ∼ 10−11.

We shall try to summarize the above experimental results as follows. When light propa-

gates in a gaseous medium, the exactly isotropical value

u =
c

Nmedium

(4)

holds approximately for an observer placed on the Earth. Within the context of a Theory

of Relativity with a preferred frame, this should not come as a complete surprise. In fact,

the usual assumption, that the isotropical value Eq.(4) holds exactly in the reference frame

S′ where the gas is in thermodynamical equilibrium, reflects the point of view of Special

Relativity with no preferred frame. However, to test this assumption requires precisely to

perform a Michelson-Morley experiment and look for fringe shifts upon local rotations of the

apparatus.

When this is done, the experiments indicate a slight anisotropy that becomes smaller when

the refractive index of the medium approaches unity. In fact vobs, and thus the anisotropy, is

larger for those interferometers operating in air, where Nair ∼ 1.00029, and becomes smaller
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in experiments performed in helium, where Nhelium ∼ 1.000036, or in an evacuated housing.

This is completely consistent with the expectations based on Lorentz transformations that

preserve the isotropical value of the speed of light in the vacuum c = 2.9979... · 1010 cm/s.

If these are valid, even in the presence of a preferred frame, no anisotropy can be detected

studying light propagation in the vacuum where Nvacuum = 1 identically.

However, Lorentz transformations do not preserve the value of the speed of light in a

medium. Therefore, the simplest way to generate an anisotropy in S′ is to start from the

isotropical value Eq.(4), assumed to be valid in some preferred frame Σ, and compute its

value in S′ through a Lorentz transformation.

Notice that this series of steps is completely analogous to the conventional treatment

of the Michelson-Morley experiment. There, one starts from the isotropical value c in Σ

and uses Galileian relativity (for which the speed of light becomes c ± v) to transform to

the observer S′ placed in the Earth’s frame. Here we shall only take into account that i)

light propagates in a gaseous medium and ii) Galilei’s trasformations have to be replaced by

Lorentz transformations.

There is, however, a hidden assumption in our procedure that should be clearly spelled out.

Eq.(4) is strictly valid for a medium at rest in the preferred frame Σ. However, the medium

is at rest in S′ and not in Σ. Therefore, strictly speaking, before Lorentz transforming to

S′, we should first correct the Σ estimate for the effect of the Fresnel’s drag that might exist

anyway. Of course, if we had to use the exact relativistic formula to compute this effect and

then transform to S′, we would obtain that the isotropical value Eq.(4) holds in S′ as well.

Here, following the experimental indications of a non-zero anisotropy in S′, we shall assume

that the Fresnel’s drag for Σ is negligible, at least for gaseous media, so that the anisotropy

in S′ is due to the genuine Lorentz transformation. This assumption reflects the point of

view that, if there is really a preferred frame, there must be somewhere a basic asymmetry

between Σ and S′. We stress, however, that our assumption of a negligible Fresnel’s drag in

Σ cannot be extended to light propagation in solid dielectrics with high refractive index. In

fact, Michelson-Morley experiments performed in a solid transparent medium (perspex) [24],

where Nperspex ∼ 1.5, show no anisotropy.

The peculiar role of gaseous media can partly be understood noticing that they cover the

ideal limit where the refractive index N tends to unity. For N = 1, light is seen to propagate

isotropically in the hypothetical preferred frame and in all moving frames S′, S′′, S′′′,...For

N 6= 1, however, light has to resolve this infinite ‘degeneracy’ and necessarily choose between

two different alternatives: either to propagate isotropically in the rest frame of the medium
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or in Σ. The experiments suggest that for (N − 1) ≪ 1 there might be still no Fresnel’s drag

for Σ so that light is seen to propagate isotropically in Σ and not in S′. However, when N
starts to differ sizeably from unity, the Fresnel’s drag in Σ becomes substantial so as to cancel

the effect of the genuine Lorentz transformation to S′. In this new regime, light propagates

isotropically in the rest frame of the medium. Just for this reason, experiments performed

in gaseous media represent the only remaining window to detect the possible existence of a

preferred frame.

Within the above assumptions, starting from Eq.(4) and denoting by v the velocity of

S′ with respect to Σ, a Lorentz transformation give the general expression for the one-way

speed of light in S′ (γ = 1/
√

1 − v
2

c2
)

u′ =
u − γv + v(γ − 1)v·u

v2

γ(1 − v·u

c2
)

(5)

where v = |v|. By keeping terms up to second order in v/u, denoting by θ the angle between

v and u and defining u′(θ) = |u′|, we obtain

u′(θ)

u
= 1 − α

v

u
− β

v2

u2
(6)

where

α = kmedium cos θ + O(k2
medium) (7)

β = kmediumP2(cos θ) + O(k2
medium) (8)

with

kmedium = 1 − 1

N 2
medium

≪ 1 (9)

and P2(cos θ) = 1
2
(3 cos2 θ − 1).

Finally, the two-way speed of light is

ū′(θ)

u
=

1

u

2u′(θ)u′(π + θ)

u′(θ) + u′(π + θ)
= 1 − v2

c2
(A + B sin2 θ) (10)

where

A = kmedium + O(k2
medium) (11)

and

B = −3

2
kmedium + O(k2

medium) (12)

In this way, as shown in Ref.[9], one obtains formally the same pre-relativistic expressions

where the kinematical velocity v is replaced by an effective observable velocity

vobs = v
√

kmedium

√
3 ∼ v

√
−2B (13)
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For instance, for the Michelson-Morley experiment, and for an ether wind along the x axis,

the prediction for the fringe shifts at a given angle θ with the x axis has the particularly

simple form (D being the length of each arm of the interferometer as measured in S′)

∆λ(θ)

λ
=

u

λ
(

2D

ū′(θ)
− 2D

ū′(π/2 + θ)
) ∼ D

λ

v2

c2
(−2B) cos(2θ) =

D

λ

v2
obs

c2
cos(2θ) (14)

that corresponds to a pure second-harmonic effect as in the old theory (see for instance

Refs.[17, 25]) where v2 is replaced by v2
obs. Notice that, in agreement with the basic isotropy

of space, embodied in the validity of Lorentz transformations, the measured length of an

interferometer at rest in S′ is D regardless of its orientation.

Also, the trend predicted by Eqs.(13) and (14), where the observable velocity, and thus

the anisotropy, becomes smaller and smaller when Nmedium approaches unity, is consistent

with the analysis of the experiments performed by Kennedy, Illingworth and Joos vs. those of

Michelson-Morley, Morley-Miller and Miller. We note that a qualitatively similar suppression

effect had already been discovered by Cahill and Kitto [26] by following a different approach.

4. As stressed in Ref.[9], the detection of a preferred frame in ether-drift experiments

is a purely experimental issue. Within our assumptions, this requires: i) the preliminary

observation of fringe shifts upon operation of the interferometer and ii) that their magnitude,

observed with different gaseous media and within the experimental errors, points consistently

to a unique value of the kinematical Earth’s velocity. Only in this case, one can conclude

that there is experimental evidence for the existence of a preferred frame.

To extract the value of the kinematical Earth’s velocity corresponding to the various vobs,

one should re-analyze the experiments in terms of the effective parameter ǫ =
v2

earth

u2 kmedium.

The conclusion of Cahill and Kitto [26] is that the classical experiments are consistent with

the value vearth ∼ 365 km/s obtained from the dipole fit to the COBE data [27] for the cosmic

background radiation. However, in our expression Eq.(13) determining the fringe shifts there

is a difference of a factor
√

3 with respect to their result vobs = v
√

kmedium. Therefore,

using Eqs.(13) and (2), for Nair ∼ 1.00029, the relevant Earth’s velocity (in the plane of the

interferometer) is not vearth ∼ 365 km/s but rather

vearth ∼ 204 ± 36 km/s (15)

In this way, using our Eq.(13), the kinematical Earth’s velocity becomes consistent with the

values needed by Miller to understand the variations of the ether-drift effect in different

epochs of the year [19]. In fact, the typical daily values, in the plane of the interferometer,
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had to lie in the range 195 ≤ vearth ≤ 211 km/s (see Table V of Ref.[19]). Such a consistency,

on one hand, increases the body of experimental evidence for a preferred frame, and on the

other hand, provides a definite range of velocities to be used in the analysis of the other

experiments.

To this end, let us compare with the experiment performed by Michelson, Pease and

Pearson [28]. These other authors in 1929, using their own interferometer, again at Mt.

Wilson, declared that their “precautions taken to eliminate effects of temperature and flexure

disturbances were effective”. Therefore, their statement that the fringe shift, as derived

from “...the displacements observed at maximum and minimum at sidereal times...”, was

definitely smaller than “...one-fifteenth of that expected on the supposition of an effect due

to a motion of the Solar System of three hundred kilometres per second”, can be taken as an

indirect confirmation of our Eq.(15). Indeed, although the “one-fifteenth” was actually a “one-

fiftieth” (see page 240 of Ref.[19]), their fringe shifts were certainly non negligible. This is

easily understood since, for an in-air-operating interferometer, the fringe shift (∆λ)class(300),

expected on the base of classical physics for an Earth’s velocity of 300 km/s, is about 500

times bigger than the corresponding relativistic one

(∆λ)rel(300) ≡ 3kair (∆λ)class(300) (16)

computed using Lorentz transformations (compare with Eq.(14) for kair ∼ N 2
air−1 ∼ 0.00058).

Therefore, the Michelson-Pease-Pearson upper bound

(∆λ)obs < 0.02 (∆λ)class(300) (17)

is actually equivalent to

(∆λ)obs < 24 (∆λ)rel(204) (18)

As such, it poses no strong restrictions and is entirely consistent with those typical low

observable velocities reported in Eq.(2).

A similar agreement is obtained when comparing with the Illingworth’s data [22] as

recently re-analyzed by Múnera [20]. In this case, using Eq.(13), the observable velocity

vobs = 3.1 ± 1.0 km/s [20] (errors at the 95% C.L.) and the value Nhelium − 1 ∼ 3.6 · 10−5,

one deduces vearth = 213 ± 36 km/s (errors at the 68% C.L.) in very good agreement with

our Eq.(15).

The same conclusion applies to the Joos experiment [23]. Although we don’t know the

exact value of Nvacuum for the Joos experiment, it is clear that his result, vobs < 1.5 km/s,
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represents the natural type of upper bound in this case. As an example, for vearth ∼ 204 km/s,

one obtains vobs ∼ 1.5 km/s for Nvacuum −1 = 9 ·10−6 and vobs ∼ 0.5 km/s for Nvacuum −1 =

1·10−6. In this sense, the effect of using Lorentz transformations is most dramatic for the Joos

experiment when comparing with the classical expectation for an Earth’s velocity of 30 km/s.

Although the relevant Earth’s velocity can be as large as 204 km/s, the fringe shifts, rather

than being (204/30)2 ∼ 50 times bigger than the classical prediction, are ∼ (30/1.5)2 = 400

times smaller.

5. Let us finally consider those present-day, ‘high vacuum’ Michelson-Morley experiments

of the type first performed by Brillet and Hall [13] and more recently by Müller et al. [14].

In these experiments, the test of the isotropy of the speed of light does not consist in the

observation of the interference fringes as in the classical experiments. Rather, one looks for

the difference ∆ν in the relative frequencies of two cavity-stabilized lasers upon local rotations

of the apparatus [13] or under the Earth’s rotation [14].

The present experimental value for the anisotropy of the two-way speed of light in the

vacuum, as determined by Müller et al.[14],

∆ν

ν
= (

∆c̄θ

c
)exp = (2.6 ± 1.7) · 10−15 (19)

can be interpreted within the framework of our Eq.(10) where

(
∆c̄θ

c
)theor ∼ |Bvacuum|v

2
earth

c2
(20)

Now, in a perfect vacuum by definition Nvacuum = 1 so that Bvacuum and vobs vanish. However,

one can explore [9] the possibility that, even in this case, a very small anisotropy might be

due to a refractive index Nvacuum that differs from unity by an infinitesimal amount. In this

case, the natural candidate to explain a value Nvacuum 6= 1 is gravity. In fact, by using the

Equivalence Principle, a freely falling frame S′ will locally measure the same speed of light as

in an inertial frame in the absence of any gravitational effects. However, if S′ carries on board

an heavy object this is no longer true. For an observer placed on the Earth, this amounts

to insert the Earth’s gravitational potential in the weak-field isotropic approximation to the

line element of General Relativity [29]

ds2 = (1 + 2ϕ)dt2 − (1 − 2ϕ)(dx2 + dy2 + dz2) (21)

so that one obtains a refractive index for light propagation

Nvacuum ∼ 1 − 2ϕ (22)
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This represents the ‘vacuum analogue’ of Nair, Nhelium,...so that from

ϕ = −GNMearth

c2Rearth

∼ −0.7 · 10−9 (23)

and using Eq.(12) one predicts

Bvacuum ∼ −4.2 · 10−9 (24)

Adopting the range of Earth’s velocity (in the plane of the interferometer) given in Eq.(15)

this leads to predict an observable anisotropy of the two-way speed of light in the vacuum

Eq.(10)

(
∆c̄θ

c
)theor ∼ |Bvacuum|v

2
earth

c2
∼ (1.9 ± 0.7) · 10−15 (25)

consistently with the experimental value in Eq.(19).

Clearly, in this framework, trying to rule out the existence of a preferred frame through

the experimental determination of ∆c̄θ

c
in a high vacuum is not the most convenient strategy

due to the vanishingly small value of Bvacuum. For this reason, a more efficient search might

be performed in dielectric gaseous media. As a check, we have compared with the only

available results obtained by Jaseja et. al [15] in 1963 when looking at the relative frequency

shifts of two orthogonal He-Ne masers placed on a rotating platform. As we shall show in

the following, their data are consistent with the same type of conclusion obtained from the

classical experiments: an ether-drift effect determined by an Earth’s velocity as in Eq.(15).

To use the experimental results reported by Jaseja et al.[15] one has to subtract pre-

liminarly a large overall systematic effect that was present in their data and interpreted by

the authors as probably due to magnetostriction in the Invar spacers induced by the Earth’s

magnetic field. As suggested by the same authors, this spurious effect, that was only affecting

the normalization of the experimental ∆ν, can be subtracted looking at the variations of the

data at different hours of the day. The data for ∆ν, in fact, in spite of their rather large

errors, exhibit a characteristic modulation (see Fig.3 of Ref.[15]) with a maximum at about

7:30 a.m. and a minimum at about 9:00 a.m. and a typical difference [15]

δ(∆ν) ∼ (1.6 ± 1.2) kHz (26)

Our theoretical starting point to understand the above (rather loose) determination is the

formula for the frequency shift of the two masers at an angle θ with the direction of the

ether-drift
∆ν(θ)

ν
=

ū′(π/2 + θ) − ū′(θ)

u
= |BHe−Ne|

v2
earth

c2
cos(2θ) (27)
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where, taking into account the values Nhelium ∼ 1.000036, Nneon ∼ 1.000067, NHe−Ne ∼
1.00004 and Eq.(12) we shall use |BHe−Ne| ∼ 1.2 · 10−4.

Further, using the value of the frequency of Ref.[15] ν ∼ 3 · 1014 Hz and our standard

value Eq.(15) for the Earth’s velocity in the plane of the interferometer vearth ∼ 200 km/s,

Eq.(27) leads to the reference value for the amplitude of the signal

(∆ν)ref = ν|BHe−Ne|
(200 km/s)2

c2
∼ 16 kHz (28)

and to its time modulation

δ(∆ν)theor ∼ 16 kHz
δv2

v2
(29)

where
δv2

v2
≡ v2

earth(7 : 30 a.m.) − v2
earth(9 : 00 a.m.)

(200 km/s)2
(30)

To evaluate the above ratio of velocities, let us first compare the modulation of ∆ν seen in

fig.3 of ref.[15] with that of vobs in fig.27 of ref.[19] (data plotted as a function of civil time

as in ref.[15]) restricting to the Miller’s data of February, the period of the year that is closer

to the date of January 20th when Jaseja et al. performed their experiment. Further, the

different location of the two laboratories (Mt.Wilson and Boston) can be taken into account

with a shift of about three hours so that Miller’s interval 3:00 a.m.−9:00 a.m. is made to

correspond to the range 6:00 a.m.−12:00 a.m. of Jaseja et al.. If this is done, although one

does not expect an exact correspondence due to the difference between the two epochs of the

year, the two characteristic trends are surprisingly close.

Thus we shall try to use the Miller’s data for a rough evaluation of the ratio reported

in Eq.(30). In this case, rescaling from vobs to vearth through Eq.(13) (for the Miller’s inter-

ferometer that was operating in air), we obtain values of δv2

v2 in the range 0.1 − 0.2. This

estimate, when replaced in Eq.(29) leads to values of δ(∆ν)theor in the range 1.6 − 3.2 kHz,

well consistent with the value 1.6 ± 1.2 kHz given in Eq.(26). Of course, one needs more

precise data. However, in spite of our crude approximations, the order of magnitude of the

effect is correctly reproduced.

This suggests, once more [9], to perform a new class of ether-drift experiments in dielectric

gaseous media. For instance, using stabilizing cavities as in Refs.[13, 14], one could replace

the high vacuum in the Fabry-Perot with air. In this case, where |Bvacuum| ∼ 4 · 10−9 would

be replaced by |Bair| ∼ 9 · 10−4, there should be an increase by five orders of magnitude in

the typical value of ∆ν with respect to Refs.[13, 14].

11



6. In this Letter we have re-considered the possible existence of a preferred reference

frame through an analysis of both classical and modern ether-drift experiments. The small

observed velocities vobs ∼ 8.5± 1.5 km/s for the Michelson-Morley, Morley-Miller and Miller

experiments, vobs ∼ 3.1 ± 1.0 km/s for the Illingworth experiment, and vobs ∼ 1 km/s for

the Joos experiment, when corrected for the effect of the refractive index, appear to point

consistently to a rather large kinematical Earth’s velocity vearth ∼ 204 ± 36 km/s (in the

plane of the interferometer).

Therefore, it becomes natural to explore the existence of a preferred frame and formulate

definite predictions for the relative frequency shift ∆ν which is measured in the present-day

experiments with cavity-stabilized lasers, upon local rotation of the apparatus or under the

Earth’s rotation. In this case, our basic relation is

∆ν

ν
∼ |Bmedium|v

2
earth

c2
(31)

where Bmedium ∼ −3(Nmedium−1), Nmedium being the refractive index of the gaseous dielectric

medium that fills the cavities. For a very high vacuum, using the prediction of General

Relativity |Bvacuum| ∼ 4 ·10−9, and the range of kinematical Earth’s velocity vearth ∼ 204±36

km/s suggested by the classical ether-drift experiments, we predict ∆ν

ν
∼ (1.9 ± 0.7) · 10−15,

consistently with the experimental result of Ref.[14]. For He-Ne masers, the same range of

Earth’s velocities leads to predict a typical value ∆ν ∼ 16 kHz, for which ∆ν

ν
∼ 5 · 10−11,

with a characteristic modulation of a few kHz in the period of the year and for the hours

of the day when Jaseja et al.[15] performed their experiment. This prediction is consistent

with their data, although the rather large experimental errors require further experimental

checks. For this reason, we propose to replace the high vacuum adopted in the Fabry-Perot

cavities with air. In this case, where the anisotropy parameter |Bvacuum| ∼ 4 · 10−9 would be

replaced by |Bair| ∼ 9 · 10−4, there should be an increase by five orders of magnitude in the

typical value of ∆ν with respect to Refs.[13, 14]. If this is not observed, the existence of a

preferred frame will be definitely ruled out.
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