Ацюковский В.А. Общая эфиродинамика. — М.:Энергоатомиздат, 2003

В начало   Другие форматы (PDF, DjVu)   <<<     Страница 439   >>>

  

439

экран, должно возникать смешение струй и соответствующее усиление или уменьшение их интенсивности.

Без синфазности фотонов, исходящих из разных точек излучателя света, явление интерференции было бы невозможно, поскольку фотоны в интерферирующих лучах были бы никак не связаны между собой по фазе, даже если бы частоты у них были одинаковы. Фазы отдельных фотонов имели бы хаотический сдвиг относительно друг друга, и никакая интерференция была бы невозможна. Интерференция света -реальное явление, а это означает, что излучающие атомы непременно должны синхронизироваться и синфазироваться между собой. Однако волновая теория этого объяснить не в состоянии.

Принципиальный механизм взаимной синхронизации и синфазирования излучающих атомов был изложен выше. Такой механизм, невозможный в волновой модели, позволяет обеспечить синхронное и синфазное излучение всех излучаемых в один и тот же момент фотонов. В результате этого на всей площади излучателя, которая многократно превышает площадь сечения отдельного фотона, в каждый момент времени устанавливается единая фаза излучения. После расщепления лучи в интерферометре сохраняют стабильную фазу излучения относительно друг друга, что и позволяет после сложения этих лучей получить интерференционную картину.

Поскольку фаза излучения может со временем меняться, то в случае, если длины интерферирующих лучей существенно различны, четкость интерференционной картины нарушается. Отсюда практическая рекомендация: при разработке интерферометров целесообразно

стремиться к равенству длин обоих интерферирующих лучей.

Во всем остальном картина интерференции вихревых фотонов совершенно подобна волновой, так как интенсивности вихрей могут суммироваться точно так же, как и интенсивности обычных волн, и вихревые фотоны способны так же создавать интерференционную картину, как и волны.

9.4.4. Дифракция

Дифракция наряду с интерференцией обычно рассматривается как подтверждение волновой природы света [15, с. 341-419]. Однако, как и интерференцию, дифракцию можно рассматривать с позиций вихревого строения фотона.

Как известно, дифракция света - отклонение направления распространения света от прямолинейного вблизи краев непрозрачных предметов - происходит в результате взаимодействия света с этими

440

Глава 9. Свет.

краями, на что было обращено внимание еще Юнгом в 1800 г. При этом свет за краем предмета отклоняется в сторону этого предмета, засвечивая теневой участок.

Истолкование дифракции с учетом принципа Гюйгенса [15, с. 341— 345; 35], согласно которому точки края предмета принимаются за новый источник волн, весьма искусственно, поскольку за источник волн согласно тому же принципу можно принять любую точку, и в этом смысле край предмета не является чем-либо особенным. Такое объяснение не проливает света на физическую сущность дифракции и в лучшем случае, является расчетным приемом.

Сущность дифракции несложно понять, если рассмотреть прохождение вихревого фотона в непосредственной близости от

непрозрачного предмета. Как видно из рис. 9.10, поверхность непрозрачного предмета, рядом с которым пролетает фотон, есть поверхность в среднем неподвижного эфира. Это следует из того, что межатомные расстояния имеют порядок 10 м, а порядок длин волнфотона - 10б м. Поэтому по отношению к фотону вихревые движения поверхности атомов усреднены.

Рис. 9.10. Механизм дифракции фотонов

В зазоре между фотоном и предметом имеет место большой градиент скорости, поскольку край фотонного вихря движется с большой скоростью в направлении, обратном направлению движения фотона, а зазор относительно мал. С противоположной стороны фотона посторонний предмет отсутствует, следовательно, градиент скорости мал. Отсюда следует, что давление эфира со стороны предмета существенно меньше, чем со стороны свободного эфира, и фотон прижимается к предмету.

После того как фотон проходит предмет, он попадает в зону, в которой давление начинает выравниваться, поскольку предмет там уже отсутствует. В этой зоне давление уже выше, чем в зазоре, но еще ниже, чем в свободном эфире. Поскольку непрозрачный предмет не мешает больше смещению фотона, а разность давлений еще существует, фотон отклоняется в сторону тени предмета.