Ацюковский В.А. Общая эфиродинамика. — М.:Энергоатомиздат, 2003

В начало   Другие форматы (PDF, DjVu)   <<<     Страница 421   >>>

  

421

дайной порядка 10 А, т.е. длинную тонкую нить. При длине волны 0,5 мкм (зеленый цвет) элементарный фотон будет иметь размеры 1мкм х1мкм х0,5 м. Однако длина фотона при одной и той же длине волны может быть самой различной. С помощью ячеек Керра фотон можно порубить на части любой длины.

Фотон имеет конечную длину, поскольку образование каждого вихря возможно лишь при определенном значении колебания возбужденной оболочки, и начиная с некоторого минимального значения амплитуды колебания осциллятора, вихрь в среде более не образуется. Этот же процесс можно рассматривать и как отрыв части массы оболочки возбужденного атома при каждом полупериоде его колебания.

Известно, что расстояние между атомами твердого тела равно 10 1(1 м, в то время как ширина и толщина фотона составляют порядка 106 м. Следовательно, на площади сечения одного фотона укладывается 108 атомов. Это означает, что в создании каждого фотона принимает участие не один, а много атомов, отдавая ему свой энергию. Сопротивление излучения для каждого атома при этом снизится, они войдут в синхронизм, а время излучения увеличится пропорционально числу атомов, участвующих в создании фотона. Таким образом, длина фотона не является величиной постоянной.

Образуя совместно общую винтовую струю эфира в прилегающих к ним областях, атомы затрачивают наименьшую энергию, если они колеблются синхронно и синфазно, ибо во всех остальных случаях между возбужденной колеблющейся оболочкой и струей возникает дополнительное вязкое трение и происходит замедление тех атомов, фаза которых опережает фазу струи, и, наоборот, струя, опередившая по фазе осциллятор, начинает отдавать энергию этому осциллятору, в результате чего отстающие атомы подтягиваются к фазе струи. Таким образом, происходят взаимная синхронизация и синфазирование колебаний возбужденных оболочек различных атомов. При этом однонаправленные вихри фотонов, созданных в соседних областях излучателя, будут подтягиваться друг к другу, создавая общие потоки (рис. 9.4).

Увеличение числа атомов, принимающих участие в создании фотона, приводит не только к увеличению длины фотона, но также и к увеличению его поперечных размеров при сохранении длины волны и к повышению плотности эфира в теле фотона, так как давление в струе, образованной несколькими дуплетами, будет повышено по сравнению с давлением в струе, образованной одним дуплетом, а кроме того, при фиксированной частоте увеличение интенсивности струй приведет к

422

Глава 9. Свет.

перестройке структуры каждого вихря, как это происходит в газовых вихрях, - начнут уплотняться стенки, общая масса и плотность газа начнут увеличиваться.

Реальные источники когерентного света никогда не бывают точечными, их площадь занимает, как минимум, несколько квадратных миллиметров. Между тем, свет от такого источника, будучи расщеплен на два луча, а затем собран на общем экране, способен создать интерференционную картину. Это означает, что фотоны в обоих лучах не только имеют одну и ту же частоту, но и единую фазу, ибо иначе никакой интерференционной картины не получилось бы. На рис. 9.4 показано, что фотоны одинаковой частоты способны создавать единую систему, в которой все они будут синфазны. Это же означает и то, что в каждый момент времени все атомы площадного источника когерентного света также синхронизируются друг с другом.

Рис. 9.4. Соединение фотонов, образованных различными атомами, в общую вихревую систему

Образование фотонов при соударении электрона и позитрона должно существенно отличаться от рассмотренного выше, поскольку происходит однократное взаимодействие винтовых тороидов. Соударяясь, электрон и позитрон должны разрушиться и образовать другие структуры. Один из вариантов такой перестройки показан на рис. 9.5.