Ацюковский В.А. Общая эфиродинамика. — М.:Энергоатомиздат, 2003

В начало   Другие форматы (PDF, DjVu)   <<<     Страница 400   >>>

  

400

материала и перераспределив тем самым ток (рис. 8.29), существенно увеличив дальность распространения токов рассеяния.

Рис. 8.29. Квазистатическое излучение тока диполем с сосредоточенными параметрами: а — без изолирующей перегородки; б — с изолирующей перегородкой между электродами диполя; в этом случае мощность

перераспределяется в дальнюю зону

Следует также учитывать, что потери энергии в ближней зоне прямо зависят от площади электродов, поскольку сопротивление слоя среды вблизи электрода и соответственно выделяемая в его окрестности тепловая мощность пропорциональны площади, как это и следует из обычного закона Ома (рис. 8.30). Поэтому для уменьшения потерь в ближней зоне целесообразно по-возможности максимально увеличивать площадь электродов.

В дополнение целесообразно напомнить, что для морской воды, являющейся типично полупроводящей средой, проводимость находится в пределах 1-10 Ом4 м4 . Это означает, что на всех частотах, меньших 800 мГ ц, преобладающей будет не реактивная, а активная составляющая, т.е. на всех меньших частотах среда является обычным резисторным проводником, практически безо всякой реактивной (емкостной) составляющей.

401

Рис. 8.30. Зависимость падения напряжения вблизи электрода от площади поверхности электрода при излучении тока в полупроводящую среду. График соответствует потерям электрического напряжения вблизи электрода шаровой формы

В рассматриваемом случае распространение электрической составляющей происходит без участия магнитного поля даже для переменного тока, поскольку магнитное поле оказывается полностью скомпенсированным в каждой точке среды. Для его получения необходимо часть среды заменить на среду с иной проводимостью, например на изолятор. Тогда в этом пространстве магнитное поле возникнет (рис. 8.31).

Рис. 8.31. Возникновение магнитного поля на границе среды и внутри среды при помещении в нее изоляционного объема