Ацюковский В.А. Общая эфиродинамика. — М.:Энергоатомиздат, 2003

В начало   Другие форматы (PDF, DjVu)   <<<     Страница 244   >>>

  

244

понятие об атомах. Их учение подняло представление о строении материи на новую ступень развития.

Левкипп (ок. 500-440 до н. э.) и Демокрит (ок. 460-370 до н. э.) создали атомистическое учение, опираясь на взгляды своих предшественников. По их мнению, атомы могут иметь различную форму и величину. Это определяет возможность их разнообразных соединений. Порядок и расположение атомов в веществах, т. е. структуры веществ, могут существенно различаться. Блогодаря различным комбинациям разнообразных атомов образуется бесконечное множество веществ. В отличие от Анаксогора, Левкипп и Демокрит считали, что движение атомов присуще им изначально как способ их существования.

Атомы Демокрита - не разрезаемые (а не неделимые! - В.А.), существующие вечно материальные образования. Атомы различаются формой, порядком следования и положением в пустом пространстве, а также величиной, зависящей от их тяжести. Они имеют впадины и выпуклости. Из их «вихрей» путем естественного сближения образуется весь мир. Но сами атомы состоят из а'меров, истинно неделимых частиц. В.И.Ленин высоко ценил материализм Демокрита, обозначив его именем материалистическую традицию в истории философии («линия Демокрита»).

Важнейшими событиями в науке, от которых берет начало атомная физика, были открытие электрона и радиоактивности [6]. В 1987 г. английский физик Дж.Дж.Томсон измерил отношение заряда отрицательных частиц, содержащихся в катодных лучах, и на этой основе, а также на том факте, что металлы при сильном нагревании или освещении испускают электроны, сделал заключение, что электроны входят в состав любых атомов. Результаты исследования свойств электрона и радиоактивности позволили строить конкретные модели атома. В модели, предложенной Дж.Дж.Томсоном в 1903 г. [7-9], атом представлялся в виде положительно заряженной сферы, в которую вкраплены отрицательно заряженные электроны. Модель Томсона объясняла ряд явлений - испускание, поглощение и рассеяние света атомом, но оказалась не способной объяснить результаты опытов Э. Резерфорда по рассеянию альфа-частиц атомами [10].

Опыты Резерфорда показали, что при пропускании через тонкие слои вещества пучка альфа-частиц небольшая доля отклонялась на угол, превышающий 90°. В 1911 г. Резерфордом была предложена планетарная модель атома, которая существует в физике до настоящего времени [11]. В центре атома, согласно этой модели, находится очень небольшое положительно заряженное ядро диаметром 1СГ13 - 1СГ12 см,

245

вокруг которого, как планеты вокруг Солнца, вращаются электроны по орбитам, так что общий размер атома составляет порядка 10х см. Модель, разработанная Резерфордом, позволила разрешить ряд проблем, но вскоре натолкнулась на принципиальные трудности, связанные с тем, что по так называемой классической теории атома электроны, вращаясь по орбите, испытывают ускорение и должны были излучать энергию и, потеряв ее, упасть на ядро. Однако этого не происходило.

Стоит отметить, что в механической планетарной модели атома на самом деле не было тех противоречий, к которым приводила так называемая «классическая» теория электродинамики. Если электрон и в самом деле вращается по круговой орбите, то он испытывает не продольное, а поперечное ускорение, при котором энергия не отдается и не приобретается, и поэтому вовсе не обязан что-либо излучать. Возникшее противоречие свидетельствовало всего лишь о недостаточности «классической» теории электродинамики. Тем не менее на это не было обращено внимания.

Выход из положения предложил датский физик Н.Бор [12-14], который постулировал существование стационарных («дозволенных») орбит, а также то, что атом излучает при переходе электрона с одной стационарной орбиты на другую и частота излучения пропорциональна разности энергий электрона на этих орбитах. Теория Бора позволила разрешить основные противоречия планетарной модели Резерфорда.

Успех теории Бора, как и предыдущие успехи квантовой теории, был достигнут за счет нарушения логической цельности теории: с одной стороны, использовалась ньютонова механика, с другой - привлекались чуждые ей искусственные правила квантования, к тому же противоречащие классической электродинамике. Однако не все в поведении атома объяснялось теорией Бора.

Доказательство корпускулярного характера света было получено в 1922 г. А.Комптоном [15], показавшим экспериментально, что рассеяние света происходит по закону упругого столкновения фотонов с электронами. Кинематика такого столкновения определяется законами сохранения, а также и импульса, причем фотону наряду с энергией следует приписать импульс (количество движения):

р = Им/с,

где v - частота световой волны, а с - скорость света.

Энергия и импульс фотона связаны соотношением Е = ср, которое справедливо в обычной механике.