Ацюковский В.А. Общая эфиродинамика. — М.:Энергоатомиздат, 2003

В начало   Другие форматы (PDF, DjVu)   <<<     Страница 213   >>>

  

213

Таблица 6.3.

Число

нейтронов

Изотоп

г

Е, МэВ

АЕ, МэВ

3

9

С

6

-

39,04

-

4

10

С

6

0+

60,32

21,3

5

п

С

6

3/2-

73,44

13,12

6

12

С

6

0+

92,16

18,72

7

13

С

6

‘/2

97,11

4,96

8

14

С

6

0+

105,29

8,18

Во-первых, дая всей совокупности изотопов характерно приращение энергии связи при присоединении четного нейтрона на величину большую, чем при присоединении нечетного. Это характерно для элементов как с четным, так и с нечетным числом протонов. В табл. 6.2 и 6.3 для примера приведены данные по энергиям изотопов бора и углерода. Изотопы расположены в порядке нарастания числа нейтронов, содержащихся в них. Указанное свойство характерно для всех без исключения изотопов всех элементов.

60

Во-вторых, во всех четно-четных ядрах до Zn можно провести

30

четкую границу в значениях энергии связи между относительно большим приращением энергии при присоединении новых нейтронов с энергией около 13 МэВ и относительно малыми приращениями энергии связи порядка 6-7 Мэв или менее. Этот скачок энергии всегда отделяет от остальных ядер четно-четные ядра, т.е. ядра, которые можно представить состоящими из одних только альфа-частиц:

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Не, Be, С, О, Ne, Mg, Si, S, Ar, Ca, Ti, Cr, Fe, Ni, Zn

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

В нечетно-четных ядрах такую границу тоже можно провести, но в них скачок энергии меньше.

214

Такое распределение энергии связи означает, что все структуры ядер можно рассматривать на основе альфа-частиц, при этом четно-четные ядра - как состоящие только из одних альфа-частиц, а остальные - как состоящие из альфа-частиц и других нуклонов, образующих между собой соединения.

Значение спина, известное практически для ядер всех изотопов, для четно-четных структур всегда равно нулю, что подтверждает высказанное предположение. Значение спина для остальных структур позволяет представить в каждом случае структуру ядра, в котором основой по-прежнему является альфа-структура.

В сравнительной таблице энергий (табл. 6.4) приведены значения энергий четно-четных ядер и результаты сопоставления их с внутренней энергией связи соответствующего количества альфа-частиц. В этой же таблице приведены первые и вторые разности приращений энергий и порядковые номера (к) четно-четных ядер в ряду своих изотопов, считая от изотопа с наименьшим значением А. В последней графе указано число нейтронов Ап, отличающее приведенный в таблице изотоп от наиболее распространенного в природе, т.е. наиболее устойчивого. Изменения во втором приращении энергии связей свидетельствуют о перестройке структуры ядер при переходе к новому значению числа Z. Как видно, ядра с магическими числами 2, 8, 20 и 28 завершают собой

8

ряды одинаковых структур. Завершает структуру также ядро Be,

4

которое нестабильно, так как его энергия связи меньше соответствующей энергии двух частиц. Данный случай можно объяснить тем, что при всех положениях двух альфа-частиц относительно друг друга сопротивление потоку эфира, выходящего из центров альфа-частиц, достаточно велико, поверхности же нуклонов, входящих в состав альфа-частиц, выпуклы и не создают достаточной основы для обеспечения высокоэнергетического соединения. Однако присоединение еще одного нуклона - протона или нейтрона - сразу же делает изотоп стабильным (рис. 6.10), так как этот нуклон оказывается мостиком, соединяющим две альфа-частицы.