Ацюковский В.А. Общая эфиродинамика. — М.:Энергоатомиздат, 2003

В начало   Другие форматы (PDF, DjVu)   <<<     Страница 133   >>>

  

133

Pr = Tjcplkr', (5.5)

и - скорость границы пограничного слоя; сР - теплоемкость среды при постоянном давлении; 77 - динамическая вязкость; к, - коэффициент теплопроводности.

Наличие градиента скоростей эквивалентно в каждой точке среды наличию двух противоположно направленных потоков.

Уменьшение температуры приводит к уменьшению в пограничном слое коэффициента динамической вязкости [18, с. 285, 316-318; 22], так как

т] Т с

— =( — ); 0,5 < (Г < 1, (5.6)

По Т0

что в свой очередь повышает стабильность вихревого образования, поскольку энергия, передаваемая им соседним слоям внешней среды, уменьшается (рис. 5.2).

Рис. 5.2. Зависимости скорости потока, температуры и кинематической вязкости от расстояния до стенки газового вихря

Экспериментальным подтверждением снижения температуры в пограничном слое является широко известный факт оледенения поверхностей крыльев летящего самолета.

На падение динамической вязкости в пограничном слое обращали внимание некоторые авторы. Это обстоятельство было также подтверждено экспериментально (см., например, [22]). Некоторые авторы считали, что уменьшение динамического коэффициента

134

Глава 5. Строение газовых вихрей.

вязкости происходит из-за так называемого «разрыва скоростей» [19-20].

В пограничном слое вихря имеет место падение давления, что является следствием того, что центробежная сила, стремящаяся отбросить газ, находящийся в пограничном слое, в установившемся движении должна быть уравновешена силой, которая возникает из-за разности давлений внешней среды и слоев, находящихся в области, располагающихся ближе к центру вращения (рис. 5.3).

Рис. 5.3. Цилиндрический газовый вихрь: поперечное сечение вихря (а); распределение плотности газа (б); эпюра касательных скоростей (е); зависимость угловой скорости вращения газа в вихре от радиуса (г)