![]() | ![]() |
129 двигаться параллельно этой стенке, и весь эффект стенки сводится, таким образом, к эффекту, происходящему от изображения вихря, если стенку рассматривать как зеркало. Гринхилл в 1877-1878 гг. рассмотрел задачи о движении вихрей в жидкости, ограниченной цилиндрическими поверхностями. Пользуясь методом изображений, он решил задачи о плоском движении одного и двух вихрей внутри и вне поверхности круглого цилиндра, а также в пространстве, ограниченном поверхностью прямоугольной четырехугольной призмы. В 1876-1883 гг. английский физик О.Рейнольдс [8] экспериментально установил критерий перехода ламинарного течения в цилиндрических трубах в турбулентное и ввел критерий, характеризующий критическое соотношение между инерционными силами и силами вязкости, при определенном значении которого ламинарное течение переходит в турбулентное и далее в вихревое. Это соотношение Re = pvllrj, названное «числом Рейнольдса», связывает р -плотность жидкости, v - скорость потока, /- характерный линейный размер, ц - динамический коэффициент вязкости и позволяет определить условиях образования турбулентностей и вихрей в конкретных случаях течений жидкостей вблизи различных поверхностей и форм. В это время рядом ученых были решены многочисленные частные задачи вихревого движения. Совершенно особую задачу поставил перед собой в 1894 г. Н.Е.Жуковский, который, пользуясь методом конформного изображения, решил задачу о движении вихря вблизи острия клина, погруженного в жидкость. Рассматривая траектории вихря, он показал, что вихревой шнур всегда уклоняется от подносимого к нему ножа. Впоследствии Жуковский разработал теорию так называемых «присоединенных» вихрей, имеющую фундаментальное значение для многих приложений [9]. В.Томсон, основываясь на теореме о сохранении вихрей, выдвинул особую атомистическую гипотезу [10-11]. Он предположил, что все пространство Вселенной заполнено эфиром - идеальной жидкостью, в которой атомы материи представляют собой бесконечно малые замкнутые вихри, зародившиеся в этой жидкости. Разнообразие в свойствах атомов В.Томсон объяснил многообразием движений, в котором находятся частицы одного простого вещества. Вихревая теория атомов, созданная В.Томсоном, не получила признания и развития. Только в 20-х годах XX столетия немецкий гидродинамик А.Корн попытался вновь воскресить идеи В.Томсона, но применительно не к атомам вещества, а к толкованию природы электрона. | 130 Глава 5. Строение газовых вихрей. Несколько позже Н. П. Кастер ин сделал попытку построения вихревой теории элементарных частиц. Однако идеи А.Корна и Н.П.Кастерина были встречены с большим недоверием широкой научной общественностью, вследствие чего они оказались изолированными и невостребованными, хотя в работах этих ученых содержится немалое число интересных соображений. С развитием авиации ученые натолкнулись на необходимость изучения вихревых образований при обтекании твердых тел. В этом отношении особого внимания заслуживают работы Кармана и Н.Е.Жуковского. Первый весьма подробно изучал поведение так называемой вихревой дорожки Кармана [9, 12, 13]. Имеются замечательные произведения А.А.Фридмана на русском языке «Опыт гидромеханики сжимаемой жидкости», а также «О вихрях в жидкости с меняющейся температурой» [14, 15], в которых дана постановка задач о движении вихрей в сжимаемой жидкости. Наконец, следует упомянуть об исследованиях Озеена [16], который впервые поставил и решил ряд задач о движении вихрей в вязкой жидкости. Идеи Озеена и Фридмана еще ждут своего продолжения. В более позднее время рядом советских и зарубежных исследователей теоретические изыскания в области вихревого движения были продолжены [см. доп. лит.]. Следует отметить, что сложность задач турбулентной и вихревой газовой динамики часто заставляет исследователей использовать упрощенные модели явлений, не всегда корректные. Например, в жидких вихрях использовано представление о том, что центральная часть линейного вихря вращается по закону твердого тела, хотя никаких физических предпосылок для этого нет [17]. Во многих случаях используются модели, не отвечающие физике явлений, пренебрегается сжимаемостью газа там, где пренебречь этим нельзя, не исследуются вязкостные, температурные и другие эффекты. Многие задачи вихревого движения сред, и в особенности, газов не решены до сих пор. К ним следует отнести, в первую очередь, проблему образования, структур и энергетики газовых вихрей. Далеко не в удовлетворительном состоянии находится теория пограничного слоя, хотя здесь многое сделано [18] . Практически полностью отсутствуют решения в области взаимодействия винтовых газовых потоков. Никогда не рассматривались задачи, связанные с взаимопроникновением вихревых потоков в разреженных газах, с взаимодействием сверхплотных винтовых газовых структур типа винтовых вихревых тороидальных колец или взаимодействием сложных винтовых вихревых структур, состоящих из многих вихрей. |