17 И наоборот, всем конкретным явлениям и закономерностям, полученным из конкретных условий, придавался характер всеобщности, тем самым, исключалась сама возможность их корректировки. Закон тяготения Ньютона - «Всемирный», Начала термодинамики - всеобщие, уравнения электродинамики Максвелла - это абсолютная истина. А уж подтверждение выдвинутого предсказания какого-нибудь частного явления и вовсе делало эти «законы» непререкаемыми. Между тем, любое формульное выражение любых явлений есть в лучшем случае всего лишь первое линейное приближение к тому, что существует на самом деле, да и то только в части поставленной цели исследования. Углубление в сущность явления неизбежно выявит его нелинейность, а постановка другой цели просто приведет к иной форме описания этого явления. Таким образом, именно идеалистический подход к разработке физических теорий предопределил кризис физики конца XIX столетия. Но вместо изменения самой сущности методологии физики пошли по дальнейшему пути абстрагирования от действительности путем ввода постулатов, т.е. положений, сформулированных на основе «гениальных догадок» и беспредельно распространяемых на весь мир и на все явления. И здесь особую роль сыграли Теория относительности А.Эйнштейна и квантовая механика. 1.2. Роль теории относительности Эйнштейна и квантовой механики в подготовке нового кризиса физикиВ основе рассуждений Специальной теории относительности (СТО) Эйнштейна лежит принципиальное отрицание эфира, признание существования эфира в природе сделало бы невозможным появление Теории относительности [3]. К мысли об отсутствии в природе эфира Эйнштейн пришел на основе сопоставления результатов экспериментов Физо (1851) [4] и Майкельсона (1881,1887) [5, 6]. Как известно, в результате проведения эксперимента Физо нашел, что свет частично увлекается движущейся средой (водой). В результате же экспериментов по обнаружению эфирного ветра, проведенных в 1881 г. Майкельсоном и в 1887 г. Майкельсоном и Морли, оказалось, что на поверхности Земли эфирный ветер отсутствует, по крайней мере, именно так были истолкованы результаты этих опытов. На самом деле эфирный ветер был обнаружен уже в самом первом опыте Майкельсона, | 18 хотя скорость его оказалась меньше, чем ожидалась. Это находилось в противоречии с теорией Лоренца об абсолютно неподвижном эфире. Детальное обоснование принципов, положенных в основу Специальной теории относительности, Эйнштейн дал в статье «Принцип относительности и его следствия» (1910) [3, с. 140]. Здесь он указал, что частичное увлечение света движущейся жидкостью (эксперимент Физо) «...отвергает гипотезу полного увлечения эфира. Следовательно, остаются две возможности: 1) эфир полностью неподвижен, т.е. он не принимает абсолютно никакого участия в движении материи (а как же эксперимент Физо, показавший частичное увлечение? - В.А.); 2) эфир увлекается движущейся материей, но он движется со скоростью, отличной от скорости движения материи. Развитие второй гипотезы требует введения каких-либо предположений относительно связи между эфиром и движущейся материей. Первая же возможность очень проста (курсив мой - В.А.), и для ее развития на основе теории Максвелла не требуется никакой дополнительной гипотезы, могущей осложнить основы теории». Указав далее, что теория Лоренца о неподвижном эфире не подтверждается результатом эксперимента и, таким образом, налицо противоречие, Эйнштейн сделал вывод о необходимости отказаться от среды, заполняющей мировое пространство, ибо, как он полагает, «... нельзя создать удовлетворительную теорию, не отказавшись от существования среды, заполняющей все пространство» [3, с. 145-146]. Отказ от эфира дал автору Специальной теории относительности возможность сформулировать пять (а не два, как обычно считается) постулатов, на которых базируется СТО: 1. Отсутствие в природе эфира, что обосновывалось только тем, что признание эфира ведет к сложной теории, в то время как отрицание эфира позволяет сделать теорию проще; 2. Принцип относительности, гласящий, что все процессы в системе, находящейся в состоянии равномерного и прямолинейного движения, происходят по тем же законам, что и в покоящейся системе (ранее применительно к механическим процессам этот принцип был сформулирован Галилеем); 3. Принцип постоянства скорости света (независимость скорости света от скорости источника); 4. Инвариантность четырехмерного интервала, в котором пространство (координаты) связано со временем через скорость света; |